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VEl Met hod
(Mei et al., 1994, Ref.[1])

Local Boundary Condition Global Boundary Condition

| \/ |

Sparse Derive Local Boundary Condition Dense
Matrix From Global Boundary Condition Matrix

1

Measured Equation of Invariance
MEI method

By means of Green'’s function in the boundary integral equations,
the measured equation include both radiation and evanescent fields.
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VEI Met hod + FD Met hod

According to the MEI method, boundary nodes are satisfies the
local linear equation which are :

‘e |ocation dependent,
e geometry specific, and
_® invariant to field excitation.

MEI postulates
4
> Cig; =0
i=1 7 =
/ (scattered field)

(MEI coefficients

FD = Finite Difference
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Solution Technique :

4 N\

One of the coefficients Iis always chosen arbitrarily.
Local equation is valid for possible set of current distributions.
metrons

- /

For C,=1 with Q metrons,

C1011 + Cyd1a + Cs013 = =0y
C1091 + Capan + G393 = — 0oy

Crog1 + C2002 + C3003 = =04
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| E- MEl Met hod

(Rius et al.,1996,Ref.[2] & H rose et al., 1999)

( )

Surface IE derived from reciprocity relation.
On surface MEI postulates.
Sparse matrix with same number of unknowns as BEM.

. J

Savings in computational time, MEI node
and memory needs.

| Suitable for arbitary 2D boundaries, but
not efficient for 3D boundaries (ref. [3]).

BEM = Boundary Element method
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Motivati on of the Research

IE-MEI method has the same number of unknowns
& @as BEM with matrix sparsity, which reduces computational
time and memory needs.

P | IE-MEI method is suitable for 2D boundaries but not efficient
for 3D problem.

In 3D, choice of suitable metron set, mesh generation,
s set of adjacent nodes, etc., are not established yet.

To approach these problems, we introduce Scalar-field IE-MEI
for the 3D boundaries (ref. [4]).



%
 Mobile Communication Group, Takada Laboratory, TiTech

bj ective of the Research (1)
P Derive the formulation for Scalar-field approach of IE-MEI
(SIE-MEI) method.

| Implement this method to the 3D uniform shape and arbitrary
shape scalar-field scattering problem.

Compare the results with the available solutions.
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(b) ective of the Research (2)

P Derive the Matrix Localization (ML) technique to reduce
the computational time.

& Implement the insensitive properties of MEI coefficients
for the scattering computation of modified scatterer with

minimum CPU time.

& Compare the CPU time & memory requirements with the
available solutions.

Additional techniques are implemented to enhance the
applicability of SIE-MEI method (ref. [5)).
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S| E- VEI Met hod

Boundary ¢ ondition
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Scalar-field problem :

[ (62(r)gu(r) — on(r)galr)dV = . ( ISLL L
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Integral Equation (IE) Formulation:

j[aw (¢1<T)3g227g"°) _ qﬁz(r)&%lg)) dS = — /v+ d1(r)ga(r)dV

l scattered field

WtV — 4, (¢1(r>ﬁz<r) - o f}2<r) - n) 15 = 0

equivalent local sources
near the scatterer

ag?f,(:) and  fi(r) -1 = ¢y(r)

Where, pao(r) = gAw +



According to the MEI technique,
the IE which satisfies the MEI postulate

_ O¢u(r)

fy (oirtr) = 2 )

Discretize the surface and
expand the local sources

localize

Jas—o

" depends on scatterer geometry, |
depends on position, and

around 7y, is invariant to excitation field. |
unknovv\r: Invariant local source\s
~ a¢1 Tm) 2 ~
) le(rm)pln(rm) — 8(n ) H’Q,n(rm) -n| =0
mekin \ Rn — {ml,na mon - 7mM,n}
¢1,q(rm> = /qu<'r/> G(Tm, ) s’ n=12-",N

i

called Metrons
q = 17 27 R Q




column vector of 2M unknown

a
=0 invariant local sources

b

(@ x 2M ] matrix of metron fields and their normal derivatives

In matrix form  [C D]

Local matrix around T, may be underdetermined (if2? < 2M ) or
overdetermined (if @ > 2M ) system of linear equations which can be

solved with least square solution using SVD.

SVD of local matrix : [C D |=UZV”

Vuin is the solution of the least square problem, to get the
coefficients for particular node, which aregy, a9, -+ , Q)

and b17 b27 7bM

Repeat the procedure for each nodal point n(=1, ..., N) and get the
sparse matrices A and B with M nonzero elements in each row.
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Scattered Field for Soft Surface:

¢mc<7°s) +¢"(ry) =0 7, € IV Boundary Condition

09"

[A][¢"™] + [B] — () __ Boundary Condition
on in Matrix Equation
&b(r”) _ a¢im(r“> | a¢sc(r”> Equivalent
on on | on ~ Surface Source
_[0¢™(ra)] (i inc
=T~ [B]A][¢™]
sc N D¢(rn) . Derivation for
() = n§1 on Glr, ) As Scattered Field
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Nurrer i cal | rpl errent at i on

Incident field, — ¢™(r) = e—jk . T

Scattered field, ¢*(r) = [ py(r r') ds’

Spherical wave function as metron set,

pr, 0, ) = %ﬁoh;?)(m) & Plml(cos )i

m=—n

1
Segment length = 10 A (wavelength)

Use rectangular patch discretization.
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cxampl e @ Sphere (1)
(2D Body of Revolution)

Incident field, ¢"(r) = pJkacost

Zonal harmonics as metrons, @\
1
p, = P(cosb), g=1,2-,0 .
2
Local sources expanded into M = 3 3
: : : segments in
Measuring function varies only along the the local region

polar direction, @
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Resulis (1)

Plot of Equivalent Surface Source on the Sphere
along the Polar Direction by Using SIE-MEI

25 180
incz
SIE-MEI __ ¢ 1o 0 1351 SIE-MEI —
2| analytical - analytical -
(D) . — 90 y
© y (@)
= 15| 180° D 45
": a=>5\ U
— 9
S Q
1] )
o @ 45
= < 90
05| al
-135
0 . . . . - : -180 . . . P .
0O 20 40 60 80 100 120 140 160 180 0 30 60 90 120 150 180
--> 0 [deg -> 0 [deg]

Radius = 5 wavelengths (A)



exampl e @ Sphere (2)
( Full 3D Body )
Incident field, ¢inc('r) — ¢ ke

Constant radial distance (r = a) with polar, and
equatorial variation, the metron set,

py = h% (ka)P™ (cos )e™

axr max
Nmar = 071727"'7Nmax m = _nmaxa"'yoy"'anmaa: @\ 1

qg=12---,Q Q:1‘|‘<nma:ﬁ_1>2‘|’2<nmax_1) 2 3| 4
Local sources expanded into M =5 5
Measuring function are varies in both polar@ thi?,?j':;sg:gn

and equatorial ¢¢  directions.
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Plot of Equivalent Surface Sources on the Sphere
along x — y Plane atz = ( , by Using SIE-MEI

SIE-MEI ___ Q4% Ly

N

=
o

Magnitude

o
ol

0 s ,,l" l l l l l ) . =
0 45 90 135 180 225 270 315 360

--> ¢ [deg]

I?hase [ded]

200

150

a1
o

100] |

o

SIE-MEI ___

45

90 135 180 225 270 315 360

--> ¢ [ded]

Radius = 1 wavelength (A)

CfMoM = Combined-field Method of Moments
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cxanpl @ : Cube

Incident field, ¢™°(r) = /%

Cube has radial, polar, and equatorial variations,

thus the metron set,
ON

py = hiy) (kr)Pyr (cosf)e’™? 103 5

Nmax

2

Measuring function varies in @ and( directions  segments in
the local region

Local sources expanded into M =5
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Resulis (3

/

Plot of Equivalent Surface Sources on the Cube
along y — z Planeatz =0 , by Using SIE-MEI

25 — 200
SIE-MEI o
b ; z

SIE-MEI _

150

100

50T/
o

50t

Magnitude
Phase[deq]

-100f

-1501

- , -200 - - . - - - -
0O 10 =20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

--> | [wavelength] --> | [wavelength]

Cube side length = 2 wavelengths (A)
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Compar i son wi th Ci MoM

Savings in CPU tine & Menory needs

Total Computational time Memory needs for Matrix storage
104 108
0 107 N*
5 103] g 10
% 86 CiMoM
c 2 = -
& © 10°(
= =
~ 10t .
| = 04 SIE-MEI
109 103 .
101 104 101 102 103 104

No. of Unknowns

No. of Unknowns
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Matri x Localilzation (M) Techni que

Conventional Solution Process :

Discretize the scatterer surface,

Localize the surface for each node,

Derive the metron fields of the node and its neighbors,
Create the local matrix and solve it for the MEI coefficients,
Repeat steps 2 to 4 for each node to get the sparse matrices.

e

Proposed Solution Process :

Discretize the scatterer surface,

Derive the metron fields of each node and create the global matrix,
Localize the global matrix for each node with its neighbors,

Create the local matrix and solve it for the MEI coefficients,
Repeat steps 3, 4 for each node to get the sparse matrices.

AL E
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Vat hemat 1 cal Fornul ati1 on: Convent i1 onal

SIE-MEI Integral Equation, fav (gbl('r)ﬁg(r) — 8%1:“) fio(r) - n) dS =0

Localized Integral Equation, /- (qbl(r)p~2(r) _ 3%1727“) 1o (7) n) dsS = 0
5 0p1(7Ty,) - A
Discretized Integral Eqn, = [01(Tm)h2n(Tm) — 1a< )NZ,n(rm> n} =0
meR, \ n

[I\/Ietron field, ¢1.4(Tm) /pq G(rpm, ') dS’]

Metron Set
q = 1727“ '7Q

Each metron field requires N times of operation,
Q metrons require N x Q times of operation.
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Local matrix for n-th node, [C D]

/

(@ x 2M | matrix of metron fields and their normal derivatives,

a

bl = U column vector of

b 2M MEI coefficients

which requires[@ x 2M x N] times of operation.

- C1,N 01,1 01,2
Forn=1 M= 3, O2,N 02,1 02,2

Con Cou Cop

Use least square solution to get,
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Repeat the procedure for each nodal point n(=1, ..., N) and get the
sparse matrices A and B.

ar; ag 0 - a4y bi11 b1 O -+ by

A1 (9 Q 0 bo1 boo b 0
oo (meman o0 b

ay1 0 -+ ayny-1 Gy N by1 O - byn—1 O

Conventional technique requires totally

[Q X 2M x N X NZZQMNQJ times of operation.
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Mat henmat i cal Fornul ati on: Proposed

Op1(r)
T an o

SIE-MEI Integral Equation, ?%v (gbl(r)ﬁg(r) (r) - n) dS =0

s 0o1(Ty) - .
Discretized Integral Eqn, X 61(rn)p2n(Tn) — gbé(; >,u2,n(7°n) ’n] =0
- Al
Global Matrix for N nodes, [C D] =0 column vector of
/ B 2N MEI coefficient

@ x 2N'| matrix of metron fields and its normal derivatives,

which requires [Q X 2N X NJ times of operation.
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Global matrix for N nodes with Q metrons,

~ I /ﬁ\
Cry) Cig Cig Crg -+ Ciya| CGinl Digooo
- Gyvor Gow Doy -

*&\\O_Q*L 002 OQ@ OQA ”'&OQ,N—I\_(C;) ) DQ,l

Localize the matrix with M (= 3) nodes.
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Ciy Cip G
Forn=1 M=3 |Gy G C

Con Cop Cop

Solve the matrix according to least square solution.

Repeat the procedure for each nodal point, n=1,...,N
and get the sparse matrices A and B.

Proposed ML technique requires totally,

[Q X 2N x N = ZQNZJ times of operation.




Conventional Technique :
Time required in the integration process is[ O(2QMN?) J

Proposed ML Technique :
Time required in the integration process is [ O(2QN?) J

ML technique can save M times of operation time.

In 2D case, M= 3 is sufficient.

For 3D arbitrary shape body M of morethan 3 (=5, 7, 9, etc.)
IS required.

In 3D ML technique can save
more than 3 times of operation time.



Time Comparison for Cylinder

Ti me Conpari son

Time Comparison for Sphere

Radius Matrix Generation
(A) | Conventional Matrix
Method Localization
1 : 2 -1
3 - B9 - 21
5. - 4:36 - 1:35
10. :36:46 :12:29
15 2:04:28 42:28
20 4:54:21 1:43:06

Radius Matrix Generation
(A) | Conventional Matrix
Method Localization
1. . 25 9
3. :35:49 :12:30
5. 4:40:52 1:37:12
10. 75:51:03 26:03:47
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Time Comnpari son

Time Comparison for Cylinder Time Comparison for Sphere
10° 100
o 5|
10t Conventional .~ ' ,\10 | Conventional
g 103 glo ML techni
O ML technique ) 103;- eennique
£ 42 =
= — 102}
1
10 101!
100 - - - - 100} - - - - -
0 5 10 15 20 25 0 2 4 6 8 10
Radius (A ) Radius (A )

& S &2
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bin
0

- by n_1 by

| nsensitive Properties
of MEl Coefficients
Sparse Matrices
app ap 0 - apy b1 b1 0
A=t p e
ay:1 0 - ayn-1 ANy by1 0
Nfnodes
Local Matrix :
n"|node

I_Q_I
S
3
-
[
Y

Localized Integral Eqn.: >
m
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Applicablility of Insensitive Properties
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Flow-chart of the Solution Technique

Input
Parameters

Discretization
& Localization

)

Input
Parameters

y

Metron Set

Discretization
& Localization

l

Generation

Calculate the
MEI Coefficients
Around the
Modified Area

!

MEI Coeficients
of Unmodified Area
from Stored Data

Reuse the MEI
Coefficients

Derivative

Conventional
Solution Technique

Metron Set Calculate
Generation the_l\/_IEI
Coefficients
:
Incident Field Calculate the
and its Normal Equivalent

Surface Source

End

Incident Field

l

and its Normal
Derivative

Calculate the
Equivalent
Surface Source

End

Proposed
Solution Technique
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Full Cube Implementation Modified Area

Modified Cube
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Resulis (1)

U

Plot of Equivalent Surface Sources on the 0.1A Modified
Cube along x — ¢ Plane atz = () , by Using SIE-MEI

25 , 200
l section A 150 _/
b )
< v "o 100} j
- ) i
= 15| O 50 i
c = |
o) Qoo |
o] 1.0| — proposed - - CiMoM % P
2 S conventional —- full cube = 501 \ I' ll
(L -100 \ /’ \‘
0.5|- VA
-150 : |/
_____ l-,f
0 -200 . . .
0 0.5 1.5 2.0 2.5 3.0 3.5 4.0 0 . . . 2.5 3.0 3.5 4.0
--> | [wavelength] --> | [wavelength]

Cube side length = 1 wavelength (A)
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Resulis (2)

U

Plot of Equivalent Surface Sources on the 0.2\ Modified
Cube along  — ¢ Plane atz = () , by Using SIE-MEI

200

2.5 T -
GJ ¢I se;:tionA z—l)\ 150 /\ ‘ /l
20}t - T_; - — ) i
@) OJZLA T 1 ) 100 ¢ !“\ I
- (D) _ : \‘ ] 11
N A © 0 i /o
C | == IE' l \ ‘ |
(@)) 10 — proposed - - CfMoM N 0 ,' " |
cu O ey conventional —- full cube o] 50} : ll
> c R [
. Q-0 AR
ol o i \
______ 150 \\‘_; - i
0 o YT v 200 {
0 0.5 . 1.5 2.0 25 3.0 3.5 4.0 0 0.5 . 15 2.0 2.5 30 35 4.0
--> | [wavelength] --> | [wavelength]

Cube side length = 1 wavelength (A)
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Resulis (3)

Plot of Equivalent surface sources on the 0.3A Modified
Cube along  — ¢ Plane atz = () , by Using SIE-MEI

2.5 : 200
section ) Z
T 7] el
D 20} — |
O ) 100
-] | )
"é‘ 1.5} o O, 50T
Q) ., — proposed -~ - CivoM / % 0
cs M = I conventional — - full cube | « ol |
= J e
/ Q. -100
0.5} ' |
‘ ' 150} |
0 TS 200
0 05 10 15 20 25 30 35 40 0 05 10 15 20 25 30 35 40
--> | [wavelength] --> | [wavelength]

Cube side length = 1 wavelength (A)
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Inner Product Between Two Vectors

Local Matrix: [C D] E =0
For each node with M =5
—a,l_ _61_ N al _a’l_ _/dll_
@ e “ 7 lalls |
a— a3 | = a = | ajs ) a =
a a —~/ a’l
4 4 a’l _
as as Ha/HQ

Full Cube Modified Cube
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Plot of Normalized Inner Product
Between Two Vectors

1.0t
T = ———
- o8
)
=
C o6}
c) L=0.5+05+1+1=3\
(q0] l— 1 —
0.4} )
2 |T0_5ﬂ section A T
o Y| 2 i
02l — vectora 2 T_?
l vector b o\ ¥
—- vectors ab o o
0 . . . . .
0 0.5 1.0 15 2.0 2.5 3.0

--> | [wavelength]
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Time Conpari son

Time Comparison for 3D Soft Cube

Cube | Time | No. of MEI
Scatterer Side | (sec.) |Coefficients
(A)

Full Cube 1 202 6,000
2 11,280 24,000
Modified Cube 1 179 5,640
2 10,743 23,340
Modified Area 1 32 940
2 754 1,640

10 segments/wavelength, M =5
< & &
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Appl i cation of SIE-M

SIE-MEI method can be applied to high contrast 3D
acoustic scattering problems.
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Application of M. Techni que

Matrix Localization technigue can be used in IE-MEI and
SIE-MEI method for the reduction of computational time
required in integration process.
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Application of Insensitive
Properties of MEl Coefficients

Insensitive properties of MEI coefficients can be used for the
computation of scattering from modified structured bodies
with minimum CPU time.
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dimmar ks on Presant Wor k

U

SIE-MEI method :

=, usessurfaceintegral equation with MEI postulates, thus the
matrix sparsity is preserved, hence the computational time
and the memory requirements are reduced.

= Issuccessfully implemented to uniform & arbitrary shape
3D scalar field (acoustic) problems.

=, Results have fair agreements with the analytical and
numerical solutions.
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-

-

-

L

Cuture Wor ks

Implement the SIE-MEI method to other arbitrary
shape 3D scalar-field problems and verify the results.

Use the hybrid method for the bodies with concave
structure and compare the result with the other numerical

solutions.

Utilize the insensitive properties of MEI coefficients
to the IE-MEI method and verify the results.
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Future Wor ks

\ Derive the mixed-potential approach of SIE-MEI method
g for 3D EM vector field scattering problem.
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Concl usi ons

Scalar-field approach of IEFMEI method has been successfully
< Implemented to three-dimensional scalar-field scattering
problem.

This method has the same number of unknowns as BEM with matrix
sparsity, which reduces computational time and memory needs.

ML technique and insensitive properties of MEI coefficients can save
< additional computational time required in the integration process.

ML technigue and insensitive properties of MEI coefficients
can be implemented to |E-M EI method without any modification.

Mobile Comm. Group Seminar, 1 July 2002, TiTech, Tokyo, %
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