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Public key cryptosystem
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One Way function
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• Assume the function “ f ” is public. The inverse 
function of “ f  ” can’t be solved from public 
information. →one way function

• Secret information can be gained by special way 
using each user’s secret key.



Elliptic Curve over Real Number
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Discrete logarithm problem 
on Elliptic Curve over Finite Field

EQPk mod#　　=×
k:Real Number (not zero)
P,Q:point on Elliptic curve over finite field
#E:The number of points on Elliptic curve

• Let P be public.Then,heavy computation is needed 
to get k from given Q . →DLP on EC

• The more the number of points are,the more difficult 
to solve DLP on EC is.

• Counting points on random Elliptic Curves is needed 
and must be fast  applying CRYPTOGRAPHY.



Elliptic Curves over GF(2^n)
• Why GF(2^n)?

– It’s easy to implement on computer because binary 
representation

• The form is following, 

• j-invariant is defined by :

This is the characteristic value for the each curve. 
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Numbers
p:prime

R
Real number

Q
rational number

pQ
p-adic number

pZ
p-adic integer

Field Ring



The Ring 　　 ー 2-adic integer2Z
• Definition (2-adic integer) 

– Let      be the projection
– A sequence ,with                    and such 

that for 　　　.
– The ring of 2-adic integers is denoted by 　　.

• More precisely, ,

• The index “n” is larger, the absolute value is 
smaller.
– For example, that is, 3>5.
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Valuation Ring R
• Let f(t) be a monic polynomial    [t] of degree N 

such that the polynomial       obtained by projecting 
the coefficients is irreducible in GF(2^N).

• Valuation Ring R (Definition):
[t] mod f(t)

• As following diagram, GF(2),    ,R and GF(2^N)
are related. 
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Valuation Ring R on computer
• The index “n” of      (called “precision”) must be 

finite to implement on computer.
• Normally,Valuation Ring R can be implemented 

as following,

Where M is a required precision and W is WORD 
SIZE of CPU.

• We must treat      as Multi precision integer .
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Bit Slice Technique

W

=n 1−N0 1 L L

M
0

RR M2/

• W data are implemented simultaneously and this 
can be reduced redundancy in last one word of 
precision.

• Memory requirement is words. 
• An algorithm has any condition branches cannot 

be applied.  

MN×



• Let be 2-adic integers,then 2-elements 
addition is represented as following.

• (4n-5) times XOR operation and (5n-9) times 
AND operation are needed for 2-adic integers 
addition which precision is n (n＞2).

Bit Slice Addition in 2Z
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Bit Slice Subtraction in 2Z
• Let be 2-adic integers,then 2-elements 

subtraction is represented as following.

where –y is represented as two’s complement of y
and x-y can be calculated as additions in     . 

• (9n-10) times XOR operation and (10n-18) times 
AND operation are needed for 2-adic integers 
subtraction which precision is n (n>2).
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Bit Slice ADD and SUB in R
• Let X,Y be 2-adic Valuation Ring, then 2 elements 

addition and subtraction are represented as 
following.

• N times addition (subtraction) in      can realize 
ADD (SUB) in R.
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Bit Slice Multiplication in
• Let be 2-adic integers,then 2-elements 

multiplication is represented as following.

• ∑(4k-5) times XOR operation and 
∑(5k-9)+n(n+1)/2 times AND operation are needed for 
2-adic integers multiplication which precision is n (n>2).
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Efficient Multiplication in R
• Karatsuba Method (1962 )

Let then,

• If  two elements have 2k-length,its multiplication 
can be realized 3-times k-length MUL and some 
ADD.

• The iteration control structure can be used.
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Efficient Multiplication in 2Z
• Modified Karatsuba Method 

Let and their precision be M.Let

Then,

k

kk

yxMkarayxMkara
yxKara

yyxxyx

2))(),((

),(
)2)(2(

1221

22

2121

+++

=
++=×

　　　　

2, Zyx ∈

)2(2)(),( MkyxyxyxyxMkara k
ABBABB >++=

k
BABABBAA

BB
k

AA

yyxxyxyx
yxyxyxKara

2)})(({

2),( 2

++−+−

+=

　　



Newton iteration and inversion
• Quadratic convergence of Newton iteration

Let and .Let k be such that             
and assume  for some n>k.Let

Then , and
• Inverse of an invertible can be obtained by 

Newton iteration whose f(x)=1/x-a.That is,
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-O3Compile option

gcc version 2.95.3Compiler

C++Programming lang.

512MB Main memory

256KBSecond cache

PentiumⅢ 1GHz (seagull)CPU

Running Times



Running Times in       (pre=95)2Z
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Running Times in R (deg=163)
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How to count points -SST Algorithm
• Sato-Skjernna-Taguchi(SST) Alghorithm

– Time complexity: O(N^3.5)
– Memory complexity:O(N^2.5)

• The process is following,
– Lift j-invariant from GF(2^n) to R
– Determine the Kernel of 2-th Verschiebung　V
– Let τ The local parameter at the point at infinity. 

Then find the value c^2 from expansion 
V(τ)=cτ+O(τ^2)

– Find an integer t satisfying  t^2=Norm(c^2)
– Finally we get #E=1+2^n-t !



Isogeny (Endomorphism)
• (definition) A rational map which is furthermore 

a group homomorphism
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Hasse’s Theorem
• Hasse’s Theorem(1934)

• What is “ t ” ??
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The little Frobenius
• 2-th power Frobenius (the little Frobenius)       is 

defined as follows.
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Canonical lift of E
• The canonical lift of an ordinary elliptic curve E 

is unique elliptic curve E↑ defined over R,which 
satisfies:
– The reduction of E↑ is E.
– End(E)=End(E↑)

0
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Modular polynomial and lifting j-inv
• 2-th modular polynomial is defined as:

• If two Elliptic curves E and E’ are related via a 
cyclic isogeny of degree N,

• (Lubin-Serre-Tate)If J is the j-invariant of the 
canonical lift of E,then there is a unique J in R 
such that 
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Lift the j-invariant
• The process of lifting the j-invariant is iterative 

Newton’s method.
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Lifting the Kernel of ∑
↑E

Σ O

• The Kernel of ∑ is 2-torsion point of E↑i.e. 
infinity and another non-trivial point.

• x coordinates of non-trivial point can be 
computed by j-invariant of E↑and E’↑.
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Computing the trace
• Let τ be the local parameter of E↑ around 

infinity .then,∑(τ) can be expanded as:

• c is computed by:

where, ,
• Trace t is square root of 
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Applicable??
• INPUT：j-invaritant∈GF(２＾N)

OUTPUT：trace ∈
↓

It’s easy to translate bit-slice representation to 
normal one.

• Algorithm has NO Condition branche.
↓

• .We can apply bit-slice technique!

2Z



Running Times over GF(2^7)

Y^3+xy=x^3+1/jcurve

-3trace 

2^7+1-3=126

2^6  (2^17)

t^5+t+1

t^7+t+1

#E

trace precise (work precise)

j-invariant

Irreducible polynomial

1.454/32=0.0454[s]Time 



Future works
• Counting points on EC over Large extension 

fields
• Implementing Karatsuba method
• Implementing faster algorithm of Lifting the j-

invariant and Norm computing

…Thank you for time !



• Let be 2-adic integers,then 2-elements 
addition is represented as following.

• (4n-5) times XOR operation and (5n-9) times 
AND operation are needed for 2-adic integers 
addition which precision is n (n＞2).

Addition in 2Z
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