Concept of Diversity Antenna Gain

Jun-ichi Takada†and Koichi Ogawa‡

Tokyo Institute of Technology[†]

Matsushita Electric Industrial, Inc.‡

Motivation

Performance measure of diversity antennas

- MEG of each antenna
- correlation between antennas

Two separated values \Rightarrow difficult for comparison

Diversity Antenna Gain

- Single parameter as a performance measure
- Not unusual, but very reasonable

History

Theory

- Spatial correlation ('70s, Yeh)
- Relation between antenna pattern correlation and fading correlation (1984, Takeuchi)
- Mean effective gain (1990, Taga)
- *Diversity antenna gain* (2000, Ogawa)

History

Practice

- Antenna diversity has been mandatory in Japanese PDC system.
- So many studies have been made; some presented in IEEE AP-S and ISAP, but mostly in Japanese only.
- Antenna-oriented study; radiation pattern, efficiency and return loss.
- MEG and correlation are not used so often among antenna engineers in Japan, as neither propagation nor diversity scheme are the teritory of them.

MEG

$$G_e = \frac{1}{1+X} \int_0^{2\pi} \int_0^{\pi} (XG_\theta P_\theta + G_\varphi P_\varphi) \,\mathrm{d}\Omega$$

- Ω : solid angle
- X : cross polarization power ratio
- G_{θ} and G_{φ} : θ and φ -polarization components of the antenna power gain (incl. radiation efficiency and impedance mismatch loss)
- P_{θ} and P_{φ} : angular power spectra of $\theta\text{-}$ and $\varphi\text{-}$ polarization components

Radiation Pattern Correlation

= Fading Correlation

$$\rho_{e12} = \frac{\left|\frac{1}{1+X}\int_{0}^{2\pi}\int_{0}^{\pi} \left(XE_{\theta 1}E_{\theta 2}^{*}P_{\theta} + E_{\varphi 1}E_{\varphi 2}^{*}P_{\varphi}\right)\mathrm{d}\Omega\right|^{2}}{G_{e1}G_{e2}}$$

 $E_{\theta k}$ and $E_{\varphi k}$: complex directivities of k-th antenna for θ and φ polarizations

$$G_{\theta k} = |E_{\theta k}|^2$$
$$G_{\varphi k} = |E_{\varphi k}|^2$$

MEG and Correlation

Two sets of diversity antennas for the comparison			
	Diversity antennas A	Diversity antennas B	
G_{e1}	0 dBi	0 dBi	
G_{e2}	$-3 \mathrm{dBi}$	0 dBi	
ρ_{e12}	0.1	0.8	

Question

Which diversity antennas perform better, and how much? $\downarrow \downarrow$ DAG is the answer!

MRC Diversity

Why MRC?

- Optimum in noise-limited environment
- Easy to compute the preformance

2-branch fading correlation matrix

$$\overline{\mathbf{R}} = \Gamma_0 \begin{bmatrix} G_{e1} & \sqrt{G_{e1}G_{e2}\rho_{e12}} \\ \sqrt{G_{e1}G_{e2}\rho_{e12}} & G_{e2} \end{bmatrix}$$

 Γ_0 : signal to noise ratio for a ideal dual-polarized isotropic antenna (MEG = 0 dB)

MRC Diversity

eigenvalues of $\overline{\mathbf{R}} = \lambda_1, \ \lambda_2$

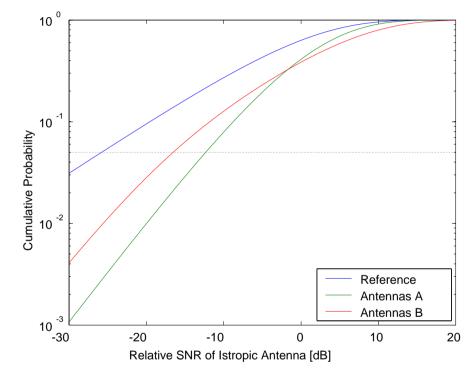
 \Rightarrow uncorrelated branches with branch power of λ_1 and λ_2

PDF, CDF and BER are given in closed forms of λ_1 and λ_2 .

Two Definitions of DAG

DAG-OP : Slow fading \Rightarrow outage probability gain of Γ_0 to satisfy the specified outage probability

DAG-BER : Fast fading \Rightarrow average BER gain of Γ_0 to satisfy the specified average BER

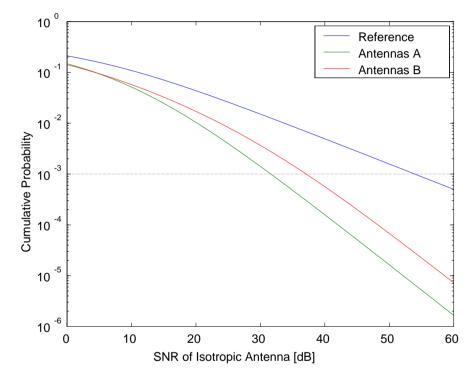

Example

Two sets of diversity antennas for the comparison			
	Diversity antennas A	Diversity antennas B	
G_{e1}	0 dBi	0 dBi	
G_{e2}	$-3 \mathrm{dBi}$	0 dBi	
ρ_{e12}	0.1	0.8	

DAG-OP and DAG-BER are compared.

Example of DAG-OP

CDF of output SNR of diversity antennas



outage probability 5 %

 $\mathsf{DAG-OP}_{\mathsf{A}} = 22.4 \ \mathsf{dB} > \mathsf{DAG-OP}_{\mathsf{B}} = 16.9 \ \mathsf{dB}$

Example of DAG-BER

Average BER of diversity antennas

BER 1.0×10^{-3}

 $\mathsf{DAG-BER}_{\mathsf{A}} = 13.5 \ \mathsf{dB} > \mathsf{DAG-BER}_{\mathsf{B}} = 9.3 \ \mathsf{dB}$

Conclusions

- DAG can directly express the diversity performance under some specific environment and some specific modem and some specific diversity schem.
- DAG value depends on which criteria the user needs. In case of DAG-BER, the value becomes smaller if the required BER is higher.
- This devinition is almost trivial, but it is still necessary to clearly present the definition.