Field Test Results of Space-Time Equalizers and

Delayed Diversity Transmission in Central Tokyo Area

Takeshi TODA ${ }^{\dagger \S}$, Yuukichi Aihara††, and Jun-ichi Takada§
† Fujitsu Laboratories Ltd., Yokosuka-shi, 239-0847 Japan
§ Tokyo Institute of Technology.,
Meguro-ku Tokyo, 152-8850 Japan
t† Matsushita Communs. Industrial Co., Ltd.
Yokosuka-shi, 239-0847 Japan

PIMRC 2002, September 18, 2002, Lisboa, Portugal

- Background
- Space-Time (ST) equalizers and delayed diversity transmission (DDT)
- Field test system
- Test locations and propagation environments
- Bit error rate performances
- ST equalizers
- ST equalizer + DDT
- Proposed ST equalizer at base: for combating inter-symbol interference (ISI) in high data-rate TDMA systems,
- array suppresses excessive long-delayed paths,
- MLSE obtains path diversity from short-delayed paths, for wide delay spread in macro-cell.
- Use of delay diversity transmission (DDT) at mobile: for increasing delay spread for path diversity in MLSE, for flat fading / small delay spread in micro-cell.
- Previous field test:
for wide delay spread in suburban macro-cell environment (VTC2001-Fall),
- ST equalizer provided ST diversity gain,
- DDT was not useful.
- This work: for urban micro- and macro-cell environments in central Tokyo,

Contents

$\sqrt{ }$ Background

- Space-Time (ST) equalizers and delayed diversity transmission (DDT)
- Field test system
- Test locations and propagation environments
- Bit error rate performances
- ST equalizers
- ST equalizer + DDT
- ST equalizer I (conventional)

ST processing

- ST equalizer II (proposed)

DDI at Mobile for ST Equalizer at base

- For flat fading and small delay spread condition.
- Increased delay spread provide path diversity in MLSE.
- Array processors suppress excessive long delayed paths.

ST equalizer at base
$\sqrt{ }$ Background
\checkmark Space-Time (ST) equalizers and delayed diversity transmission (DDT)

- Field test system
- Test locations and propagation environments
- Bit error rate performances
- ST equalizers
- ST equalizer + DDT

Radio frequency	3.35 GHz
Modulation	QPSK
Transmission rate	$4.096 \mathrm{Mb} / \mathrm{s}$
TDM frame format	Training/data : 48/ 208 symbols (32 symbols for correlation)
Tx antenna	- Colinear dipole (5.5 dBi) $-5 / 15 \lambda$ antenna-spacing for two-branch DDT
Rx array antenna	Four-dipole circular array (8 spacing)
MMSE for array	Sample matrix inversion (SMI) algorithm
MLSE	Viterbi algorithm, - Four states (1Ts-spaced two taps) -10 symbols path memory

Field lest System

x x Antenna at Mobile

I wo Antennas for DDI at Mobile

Contents

$\sqrt{ }$ Background
\checkmark Space-Time (ST) equalizers and delayed diversity transmission (DDT)
$\sqrt{ }$ Field test system

- Test locations and propagation environments
- Bit error rate performances
- ST equalizers
- ST equalizer + DDT
l est Location \#1, \#2, and \#3

Jinbo-chou Kanda Chiyoda-ku, Tokyo

I est Location \#1, \#2, and \#3

Jinbo-chou Kanda Chiyoda-ku, Tokyo

Rx Array Antenna at I est Location \#1

Height of major buildings around : 20~25 m

Delay Characteristic and Bit Error Performances in Test Location \#1

Delay Profile in Test Location \#1 with 1Ts-DDT

Delay Characteristic and Bit Error Performances with DDT in Test Location \#1

l est Location \#2

Rx Array Antenna at I est Location \#2

Height of major buildings around : $30 \sim 35 \mathrm{~m}$

Delay Characteristic and Bit Error Performances

 in Test Location \#2
l est Location \#3

Contents

$\sqrt{ }$ Background
\checkmark Space-Time (ST) equalizers and delayed diversity transmission (DDT)
$\sqrt{ }$ Field test system
\checkmark Test locations and propagation environments

- Bit error rate performances
- ST equalizers
- ST equalizer + DDT

Measured bit errors for more thar several hundreds thousands of burst are gathered and averaged in each $0.5 \mathrm{E}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}$ step.

ST equalizer I

ST equalizer II (proposed)

Envelope correlation Detween rirst-arrival and i is-delayed Paths Created by DDT in Test Location \#1

Conclusions

$\sqrt{ }$ Proposed ST equalizer :
(space and path diversity effect was observed,)
effective in urban micro- and macro-cells environments.
$\sqrt{ }$ Proposed use of DDT for ST equalizer : (path diversity effect was observed,) effective in flat fading and small delay spread in urban micro-cell environment.

