導波管スロットアンテナの 数値固有モード基底関数を用いた モーメント法解析

Tokyo Institute of Technology Ando and Hirokawa Lab. Takada Lab.

Takuichi Hirano

Outline

Objective

導波管クロススロットアレーの設計 複雑(任意)な形状を有するスロットの解析

Waveguide Crossed Slot Array

東工大移動通信グループ合同輪講 No. 5 Past Work

Single-Layer Slotted Leaky Waveguide Array with a 52-deg. Tilted Beam in El. Only Azimuthal Mechanical Steering for Quick Tracking to a Satellite → Height: 9cm, Weight: 8kg, Size: 45cm × 55cm

MotorFan 1994. 11 正確ではない

東工大移動通信グループ合同輪講 No. 6 A Waveguide Crossed Slot Array

東工大移動通信グループ合同輪講 No.7 クロススロットの円偏波放射原理(直感的説明)

Tokyo Institute of Technology

Principle of Leaky-wave Operation

This relation is satisfied when the slot spacing is not equal to one guide wavelength.

Beam direction is independent of slot spacing

Feeding Waveguide

Analysis of One Slot

Integral Equations

連立積分方程式

MoM/FEM Analysis

Effect of the Wall Thickness

Edge-based FEM

Eigenmode Basis Functions

ルーフトップ関数

Frequency vs. S21

Radiation Pattern

解析法の信頼性を確認できた

Analysis of a Matching Crossed Slot

X字型導波管の固有モード関数(磁流基底関数)

Cutoff Wavenumbers 1:1.3:1.24, Excitation coefs 1.1:1.18:0.00079

カットオフ波数の変化

 $\overline{\mathbf{x}}$

円偏波放射原理

円偏波放射原理アニメーション

MoM/FEM Analysis

Setting of the Problem

Design Procedure

a 1. Determine h the waveguide size and the number of elements $\theta_{\star} = 16.0 mm$ Leaky-wave Beam width > Number of slots=8 2. Determine initial slot lengths using infinite periodic model Simulate mutual couplings → 3. Finite array analysis MoM/FEM 4. Modify slot parameters

Power Relation and Slot Coupling

Determine Initial Slot Parameters

Radiation Pattern (Init.)

東工大移動通信グループ合同輪講 No. 32 E-field Radiated by Each Slot (Init.)

Correction of the Power

Radiation Pattern (Corrected, 3 Iterations)

Freq. vs. S11 and S21 (Corrected, 3 Iterations)

Freq. vs. Axial Ratio (Corrected, 3 Iterations)

E-field Radiated by Each Slot (Corrected, 3 Iterations)

Correction (Method 2)

Radiation Pattern

S11 and S21

Axial Ratio

E-field Radiated by Each Slot

東工大移動通信グループ合同輪講 No. 44 W.G. Crossed Slot Array

Design Model for a Matching Crossed Slot

Frequency Characteristics

Conclusion

