
Dept. of Electrical & Electronic Engg.
Mobile Communication Group

N.M.Alam Chowdhury
July 1, 2002

Mobile Comm. Group Seminar, 1 July 2002, TiTech, Tokyo, Japan

Scalar-field approach of IE-MEI 
Method for the Three-dimensional 

Scattering Problem

Scalar-field approach of IE-MEI 
Method for the Three-dimensional 

Scattering Problem



Brief Review of Measured Equation of Invariance (MEI) 
and Integral Equation formulation of MEI (IE-MEI) Method  
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MEI MethodMEI Method

Local Boundary Condition Global Boundary Condition

Measured Equation of Invariance
MEI method

(Mei et al.,1994, Ref. [1])

Derive Local Boundary Condition
From Global Boundary Condition

By means of Green’s function in the boundary integral equations, 
the measured equation include both radiation and evanescent fields.

Sparse 
Matrix

Dense 
Matrix



MEI Method + FD Method
According to the MEI method, boundary nodes are satisfies the 
local linear equation which are :

scattered field

location dependent,
geometry specific, and
invariant to field excitation.

MEI postulates

MEI coefficients
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Solution Technique : 

       One of the coefficients is always chosen arbitrarily.
Local equation is valid for possible set of current distributions.

For C4=1 with Q metrons,
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Surface IE derived from reciprocity relation.
On surface MEI postulates.
Sparse matrix with same number of unknowns as BEM.

Savings in computational time,
and memory needs.

Suitable for arbitary 2D boundaries, but
not efficient for 3D boundaries (Ref. [3]).

Scatterer

MEI node

(Rius et al.,1996, Ref. [2] & Hirose et al.,1999)

IE-MEI MethodIE-MEI Method

BEM = Boundary Element method



IE-MEI  method has the same number of unknowns 
as BEM with matrix sparsity, which reduces computational 
time and memory needs.

 IE-MEI method is suitable for 2D boundaries but not efficient 
 for 3D problem.   

 In 3D, choice of suitable metron set, mesh generation,  
 set of adjacent nodes, etc., are not established yet.   

 To approach these problems, we introduce Scalar-field IE-MEI 
 for the 3D boundaries (Ref. [4]).

Motivation of the ResearchMotivation of the Research



Derive the formulation for Scalar-field approach of IE-MEI 
(SIE-MEI) method. 

 Obtain the suitable metron set and computational  technique 
to implement SIE-MEI method in 3D problem efficiently.

 Compare the results with the available solutions.

 Implement this method to the 3D uniform shape and arbitrary 
 shape scalar-field scattering problem.

Objective of the Research (1)Objective of the Research (1)



Derive the Matrix Localization (ML) technique to reduce 
the computational time.

Additional techniques are implemented to enhance the 
applicability of SIE-MEI method (Ref. [5]).

Compare the CPU time & memory requirements with the 
available solutions.

Implement the insensitive properties of MEI coefficients 
for the scattering computation of modified scatterer with 
minimum CPU time.

Objective of the Research (2)Objective of the Research (2)



SIE-MEI MethodSIE-MEI Method

Scalar-field 
  Problem

MEI Technique

Hirose’s Approach

Boundary Condition

Least Square Solution

Derivation of
Surface Source 

Scalar-field
Integral Eqn.

  Scalar 
Reciprocity 
 Relation

 System 
of Linear 
Equations

Sparse Matrix
 of Unknown
Coefficients

Scalar Helmholtz Equations



Scalar-field problem :

Scalar reciprocity relation
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According to the MEI technique, localize 
the IE which satisfies the MEI postulates 

depends on scatterer geometry, 
depends on position, and
is invariant to excitation field.

EGF H I H I

J KML N J OQPSR J N J OQPSR J
unknown invariant local sources

Discretize the surface and 
expand  the  local  sources 
around      
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In matrix form column vector of       unknown
      invariant local sources

matrix of metron fields and their normal derivatives

SVD of local matrix :
k

  is the solution of the least square problem, to get the
  coefficients for particular node, which are                              
  and

lMmon

Repeat the procedure for each nodal point n (= 1, ..., N) and get the 
sparse matrices A and B with M nonzero elements in each row.

Local matrix around       may be underdetermined (if              ) or 
overdetermined (if              ) system of linear equations which can be 
solved with least square solution using SVD.
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Incident field,

Scattered field,

Spherical wave function as metron set,

Numerical ImplementationNumerical Implementation
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Use rectangular patch discretization. 

Segment length (wavelength)



Incident field,

Local sources expanded into M = 3

   segments in 
the local region

Example : Sphere (1)Example : Sphere (1) ��
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Zonal harmonics as metrons,

(2D Body of Revolution)

Measuring function varies only along the 
polar direction,



Plot of Equivalent Surface Source on the Sphere 
    along the Polar Direction by Using SIE-MEI

Radius =  5 wavelengths (λ)
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Incident field,

Local sources expanded into M = 5

Measuring function are varies in both polar
and equatorial        directions.

¯±°³² ¯M°^²

Constant radial distance (r = a) with polar, and 
equatorial variation, the metron set, 
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Example : Sphere (2)Example : Sphere (2)
( Full 3D Body )



Plot of Equivalent Surface Sources on the Sphere 
along              Plane at            , by Using SIE-MEI
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Radius =  1 wavelength (λ)
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CfMoM = Combined-field Method of Moments



Cube has radial, polar, and equatorial variations, 
thus the metron set, 

Local sources expanded into M = 5
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Cube

Incident field,

Measuring function varies in     and      directions
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 Plot of Equivalent Surface Sources on the Cube 
along              Plane at            , by Using SIE-MEI

Cube side length =  2 wavelengths (λ)
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Savings in CPU time & Memory needs

Total Computational time Memory needs for Matrix storage
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Conventional Solution Process :

Matrix Localization (ML) TechniqueMatrix Localization (ML) Technique

1. Discretize the scatterer surface,
2. Localize the surface for each node,
3. Derive the metron fields of the node and its neighbors,
4. Create the local matrix and solve it for the MEI coefficients,
5. Repeat steps 2 to 4 for each node to get the sparse matrices.

Proposed Solution Process :
1. Discretize the scatterer surface,
2. Derive the metron fields of each node and create the global matrix,
3. Localize the global matrix for each node with its neighbors,
4. Create the local matrix and solve it for the MEI coefficients,
5. Repeat steps 3, 4 for each node to get the sparse matrices.



SIE-MEI Integral Equation,

Localized Integral Equation,

Discretized Integral Eqn,

  Metron Set
Metron field, 

Mathematical Formulation:Conventional
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Each metron field requires N times of operation, 
Q metrons require N x Q times of operation.



Local matrix for n-th node,

For n = 1, M = 3,

Use least square  solution to get,

and

    column vector of 
      MEI coefficients
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                matrix of metron fields and their normal derivatives, 

which requires times  of operation.



Repeat the procedure for each nodal point n (= 1, ... , N) and get the 
sparse matrices A and B.
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Conventional technique requires totally

times of operation.



SIE-MEI Integral Equation,

Global Matrix for N nodes,    column vector of 
       MEI coefficient

Mathematical Formulation:Proposed

%'& ( ) ( )

Discretized Integral Eqn, * + * ,.-/* * + * ,.-/* *

                    matrix of metron fields and its normal derivatives, 

  which requires times of operation.
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Repeat the procedure for each nodal point, n = 1,...,N 
and get the sparse matrices A and B.

Solve the matrix according to least square solution.

For n = 1, M = 3,
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Proposed ML technique requires totally,

times of operation.



Conventional Technique : 
     Time required in the integration process is  

In 2D case, M= 3 is sufficient.

For 3D arbitrary shape body M of more than 3 (= 5, 7, 9, etc.) 
is required.

ML technique can save M times of operation time.

In 3D ML technique can save 
more than 3 times of operation time.

C

Proposed ML Technique : 
     Time required in the integration process is  D



Time Comparison for Cylinder

Radius         Matrix Generation
  ( λ )      Conventional       Matrix 
                  Method        Localization

  1.              :    :  2            :    :  1
  3.              :    :59            :    :21
  5.              :  4:36            :  1:35
10.              :36:46            :12:29
15.            2:04:28            :42:28
20.            4:54:21          1:43:06

Time ComparisonTime Comparison

Time Comparison for Sphere

Radius            Matrix Generation  
  ( λ )      Conventional        Matrix 
                  Method         Localization

  1.              :    :25              :    :  9
  3.              :35:49              :12:30
  5.            4:40:52            1:37:12
10.          75:51:03          26:03:47



Time Comparison for Cylinder Time Comparison for Sphere
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Local Matrix :

Localized Integral Eqn.:
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Applicability of Insensitive Properties
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Flow-chart of the Solution Technique
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Implementation
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Cube side length =  1 wavelength (λ) 
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 Plot of Equivalent Surface Sources on the 0.1λ Modified 
 Cube along              Plane at            , by Using SIE-MEI



Cube side length =  1 wavelength (λ)
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 Plot of Equivalent Surface Sources on the 0.2λ Modified 
 Cube along              Plane at            , by Using SIE-MEI
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Cube side length =  1 wavelength (λ)
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 Plot of Equivalent surface sources on the 0.3λ Modified 
 Cube along              Plane at            , by Using SIE-MEI
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Inner Product Between Two Vectors
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Plot of Normalized Inner Product 
Between Two Vectors
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Time ComparisonTime Comparison

Time Comparison for 3D Soft Cube

                          Cube     Time      No. of MEI 
Scatterer            Side      (sec.)    Coefficients
                            (λ)      

Full Cube               1            202         6,000
                              2       11,280       24,000
Modified Cube       1            179         5,640
                              2       10,743       23,340
Modified Area        1              32            940
                              2            754         1,640

10 segments/wavelength,  M = 5



SIE-MEI method can be applied to high contrast 3D 
acoustic scattering problems.

Application of SIE-MEIApplication of SIE-MEI



Matrix Localization technique can be used in IE-MEI and 
SIE-MEI method for the reduction of computational time 
required in integration process.

By reducing the integration time it can reduce the 
overall CPU time.

Application of ML TechniqueApplication of ML Technique



Insensitive properties of MEI coefficients can be used for the 
computation of scattering from modified structured bodies 
with minimum CPU time.

This properties are not only applicable for SIE-MEI method, 
but can also be used for any kind of MEI technique.

This properties is useful for the repeated computation of the 
modified structure w.r.to the some specified parameters.

Application of Insensitive 
Properties of MEI Coefficients
Application of Insensitive 

Properties of MEI Coefficients



Results have fair agreements with the analytical and 
numerical solutions.

uses surface integral equation with MEI postulates, thus the
matrix sparsity is preserved, hence the computational time 
and the memory requirements are reduced.

is successfully  implemented to uniform & arbitrary shape 
3D  scalar field (acoustic) problems.

Remarks on Present Work Remarks on Present Work 

SIE-MEI  method :



Future Works Future Works 

Implement the SIE-MEI method to other arbitrary 
shape 3D scalar-field problems and verify the results.

Utilize the insensitive properties of MEI coefficients 
to the IE-MEI method and verify the results.

Use the hybrid method for the bodies with concave 
structure and compare the result with the other numerical 
solutions.



Future Works Future Works 

Derive the mixed-potential approach of SIE-MEI method 
for 3D EM vector field scattering problem.



Scalar-field approach of IE-MEI  method has been successfully 
implemented to three-dimensional scalar-field scattering 
problem.

This method has the same number of unknowns as BEM with matrix 
sparsity, which reduces computational time and memory needs.

Conclusions Conclusions

ML technique and insensitive properties of MEI coefficients 
can be implemented to IE-MEI method without any modification.

ML technique and insensitive properties of MEI coefficients can save 
additional computational time required in the integration process.

Mobile Comm. Group Seminar, 1 July 2002, TiTech, Tokyo, Japan
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