Counting points on Elliptic Curve defined over GF($2^{\wedge} \mathrm{n}$)

and its software implementation
KAZUYA HIRADATE
ARAKI-LAB M2

Today's Contents

- PKC and One way function
- DLP on Elliptic Curve and Number
- 2-adic Numbers and its Valuation Ring R
- Bit-Slice technique
- Addition,Multiplication and Inversion in Z 2 and R
- Running times in Z2 and R
- Sato-Skjernna-Taguchi (SST) Algorithm
- Hasse'Theorem ,Isogeny, Frobenius morphism
- Lifting the j-invariant and 2-torsion,compute trace
- Running Times over GF($2^{\wedge} 7$)

Public key cryptosystem

One Way function

$$
\begin{aligned}
& x_{\text {public }}=f\left(x_{\text {secret }}\right) \\
& f^{-1}\left(x_{\text {public }}\right)=x_{\text {secret }}
\end{aligned}
$$

- Assume the function " f " is public. The inverse function of " f " can't be solved from public information. \rightarrow one way function
- Secret information can be gained by special way using each user's secret key.

Elliptic Curve over Real Number

$E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$

Discrete logarithm problem on Elliptic Curve over Finite Field
 $$
k \times P=Q \quad \bmod \# E
$$
 k :Real Number (not zero)
 P,Q:point on Elliptic curve over finite field
 \#E:The number of points on Elliptic curve

- Let P be public.Then,heavy computation is needed to get k from given $\mathrm{Q} . \rightarrow \mathrm{DLP}$ on EC
- The more the number of points are,the more difficult to solve DLP on EC is.
- Counting points on random Elliptic Curves is needed and must be fast applying CRYPTOGRAPHY.

Elliptic Curves over GF($\left.2^{\wedge} \mathrm{n}\right)$

- Why GF($\left.2^{\wedge} n\right)$?
- It's easy to implement on computer because binary representation
- The form is following,

$$
E: y^{2}+x y=x^{3}+a_{6} \quad a_{6} \in G F\left(2^{n}\right)
$$

- j-invariant is defined by :

$$
j(E)=1 / a_{6} \quad j(E) \in G F\left(2^{n}\right)
$$

This is the characteristic value for the each curve.

Numbers

p:prime
R

rational number

The Ring $Z_{2}-2$-adic integer

- Definition (2-adic integer)
- Let π_{n} be the projection $Z / 2^{n+1} Z \rightarrow Z / 2^{n} Z$
- A sequence $x=\left(x_{1} \ldots x_{n} \ldots\right)$, with $x_{n} \in Z / 2^{n} Z$ and such that $\pi_{n}\left(x_{n+1}\right)=x_{n}$ for $n \geq 1$.
- The ring of 2-adic integers is denoted by Z_{2}.
- More precisely, $x \in Z_{2}$,

$$
x=x_{0} 2^{0}+x_{1} 2^{1}+x_{2} 2^{2}+\cdots+x_{n} 2^{n}+\cdots \quad x_{i}=\{0,1\}
$$

- The index " n " is larger, the absolute value is smaller. $\quad 2^{0}+2^{1}>2^{0}+2^{2}$
- For example, that is, $3>5$.

Valuation Ring R

- Let $f(t)$ be a monic polynomial $Z_{2}[t]$ of degree N such that the polynomial $\pi(f)$ obtained by projecting the coefficients is irreducible in $\mathrm{GF}\left(2^{\wedge} \mathrm{N}\right)$.
- Valuation Ring R (Definition):

$$
Z_{2}[t] \bmod f(t)
$$

- As following diagram, $\mathrm{GF}(2), Z_{2}, \mathrm{R}$ and $\mathrm{GF}\left(2^{\wedge} \mathrm{N}\right)$ are related.

Valuation Ring R on computer

- The index "n" of Z_{2} (called "precision") must be finite to implement on computer.
- Normally,Valuation Ring R can be implemented as following,

Where M is a required precision and W is WORD SIZE of CPU.

- We must treat Z_{2} as Multi precision integer .

Bit Slice Technique

- W data are implemented simultaneously and this can be reduced redundancy in last one word of precision.
- Memory requirement is $N \times M$ words.
- An algorithm has any condition branches cannot be applied.

Bit Slice Addition in Z_{2}

- Let $x, y \in Z_{2}$ be 2-adic integers,then 2-elements addition is represented as following.

$$
\begin{aligned}
& x=x_{0} 2^{0}+x_{1} 2^{1}+x_{2} 2^{2}+\cdots+x_{n-1} 2^{n-1}+\cdots \quad x_{i}=\{0,1\} \\
& y=y_{0} 2^{0}+y_{1} 2^{1}+y_{2} 2^{2}+\cdots+y_{n-1} 2^{n-1}+\cdots \quad y_{i}=\{0,1\} \\
& x+y=\left(x_{0} \oplus y_{0}\right) 2^{0}+\left(\left(x_{0} \& y_{0}\right) \oplus x_{1} \oplus y_{1}\right) 2^{1}+ \\
& \cdots+\left[\left\{\left(x_{n-2} \& y_{n-2}\right) \oplus\left(x_{n-2} \&\left(x_{n-3} \& y_{n-3}\right)\right)\right.\right. \\
& \left.\left.\quad \oplus\left(y_{n-2} \&\left(x_{n-3} \& y_{n-3}\right)\right)\right\} \oplus x_{n-1} \oplus y_{n-1}\right] 2^{n-1}+\cdots
\end{aligned}
$$

- (4n-5) times XOR operation and (5n-9) times AND operation are needed for 2-adic integers addition which precision is $n(n>2)$.

Bit Slice Subtraction in Z_{2}

- Let $x, y \in Z_{2}$ be 2-adic integers, then 2-elements subtraction is represented as following.
$x=x_{0} 2^{0}+x_{1} 2^{1}+x_{2} 2^{2}+\cdots+x_{n-1} 2^{n-1}+\cdots \quad x_{i}=\{0,1\}$
$y=y_{0} 2^{0}+y_{1} 2^{1}+y_{2} 2^{2}+\cdots+y_{n-1} 2^{n-1}+\cdots \quad y_{i}=\{0,1\}$
$x-y=x+1+\left\{\left(1 \oplus y_{0}\right) 2^{0}+\left(1 \oplus y_{1}\right) 2^{1}+\cdots+\left(1 \oplus y_{n-1}\right) 2^{n-1}+\cdots\right\}$
where $-y$ is represented as two's complement of y and $x-y$ can be calculated as additions in Z_{2}.
- (9n-10) times XOR operation and (10n-18) times AND operation are needed for 2 -adic integers subtraction which precision is $n(n>2)$.

Bit Slice ADD and SUB in R

- Let X,Y be 2-adic Valuation Ring, then 2 elements addition and subtraction are represented as following.

$$
\begin{aligned}
& X=X_{0}+X_{1} \psi+X_{2} \psi^{2}+\cdots+X_{n-1} \psi^{n-1} \quad X_{i} \in Z_{2} \\
& Y=Y_{0}+Y_{1} \psi+Y_{2} \psi^{2}+\cdots+Y_{n-1} \psi^{n-1} \quad Y_{i} \in Z_{2} \\
& X+Y=\left(X_{0}+Y_{0}\right)+\left(X_{1}+Y_{1}\right) \psi+\cdots+\left(X_{n-1}+Y_{n-1}\right) \psi^{n-1}
\end{aligned}
$$

- N times addition (subtraction) in Z_{2} can realize ADD (SUB) in R.

Bit Slice Multiplication in Z_{2}

- Let $x, y \in Z_{2}$ be 2-adic integers,then 2-elements multiplication is represented as following.

$$
\begin{aligned}
& x=x_{0} 2^{0}+x_{1} 2^{1}+x_{2} 2^{2}+\cdots+x_{n} 2^{n}+\cdots \\
& y=y_{0} 2^{0}+y_{1} 2^{1}+y_{2} 2^{2}+\cdots+y_{n} 2^{n}+\cdots \\
& x \times y=x_{0} \&\left(y_{0} 2^{0}+\cdots+1\right\} \\
& \quad+x_{1} 2^{1} \&\left(y_{0} 2^{0}+\cdots+y_{n-1} 2^{n-1}\right) \\
& \left.\cdots+x_{n} 2^{n-1}\right) \& y_{0} 2^{0}
\end{aligned}
$$

- $\sum(4 \mathrm{k}-5)$ times XOR operation and
$\sum(5 \mathrm{k}-9)+\mathrm{n}(\mathrm{n}+1) / 2$ times AND operation are needed for 2-adic integers multiplication which precision is $n(n>2)$.

Efficient Multiplication in R

- Karatsuba Method (1962)

Let $X, Y \in R$ then,

$$
\begin{aligned}
X \times Y & =\left(X_{A} \psi^{k}+X_{B}\right)\left(Y_{A} \psi^{k}+Y_{B}\right) \\
& =X_{A} Y_{A} \psi^{2 k}+X_{B} Y_{B}+\left(X_{A} Y_{B}+X_{B} Y_{A}\right) \psi^{k} \\
& =X_{A} Y_{A} \psi^{2 k}+X_{B} Y_{B}
\end{aligned}
$$

$$
-\left\{X_{A} Y_{A}+X_{B} Y_{B}-\left(X_{A}+X_{B}\right)\left(Y_{A}+Y_{B}\right)\right\} \psi^{k}
$$

- If two elements have 2 k -length,its multiplication can be realized 3-times k-length MUL and some ADD.
- The iteration control structure can be used.

Efficient Multiplication in Z_{2}

- Modified Karatsuba Method

Let $x, y \in Z_{2}$ and their precision be M.Let $\operatorname{Kara}(x, y)=x_{A} y_{A} 2^{2 k}+x_{B} y_{B}$

$$
-\left\{x_{A} y_{A}+x_{B} y_{B}-\left(x_{A}+x_{B}\right)\left(y_{A}+y_{B}\right)\right\} 2^{k}
$$

$\operatorname{Mkara}(x, y)=x_{B} y_{B}+\left(x_{A} y_{B}+x_{B} y_{A}\right) 2^{k}(k>M / 2)$
Then,

$$
\begin{aligned}
x \times y= & \left(x_{1} 2^{k}+x_{2}\right)\left(y_{1} 2^{k}+y_{2}\right) \\
= & \operatorname{Kara}\left(x_{2}, y_{2}\right) \\
& \quad+\left(\operatorname{Mkara}\left(x_{1}, y_{2}\right)+\operatorname{Mkara}\left(x_{2}+y_{1}\right)\right) 2^{k}
\end{aligned}
$$

Newton iteration and inversion

- Quadratic convergence of Newton iteration

Let $x \in R$ and $f(x) \in R[t]$.Let k be such that $2^{k} \| f^{\prime}(x)$ and assume $2^{n+k} \mid f(x)$ for some $\mathrm{n}>\mathrm{k}$. Let

$$
\Delta=\frac{2^{-k} f(x)}{2^{-k} f^{\prime}(x)} \quad y=x-\Delta
$$

Then $y \equiv x \bmod 2^{n} \quad, 2^{2 n} \mid f(y)$ and $2^{k} \| f^{\prime}(y)$

- Inverse of an invertible $a \in R$ can be obtained by Newton iteration whose $\mathrm{f}(\mathrm{x})=1 / \mathrm{x}-\mathrm{a}$. That is,

$$
x \leftarrow x-f(x) / f^{\prime}(x)=x+x(1+a x)
$$

Running Times

CPU	Pentium III 1GHz (seagull)
Second cache	256 KB
Main memory	512 MB
Programming lang.	$\mathrm{C}++$
Compiler	gcc version 2.95 .3
Compile option	-O 3

Running Times in $Z_{2} \quad($ pre $=95)$

Operation	BITSLICE $(* 32)$ $[\mu \mathrm{s}]$	BITSLICE $(* 1)$ $[\mu \mathrm{s}]$	NORMAL $\left({ }^{*} \mathbf{1}\right)$ $[\mu \mathrm{s}]$
ADD	$\mathbf{5 . 4}$	$\mathbf{0 . 1 6 9}$	$\mathbf{0 . 7 0 9}$
SUB	$\mathbf{1 7 . 8}$	$\mathbf{0 . 5 5 6}$	$\mathbf{0 . 7 3 4}$
MUL	$\mathbf{1 3 0 . 1}$	$\mathbf{4 . 0 6 6}$	$\mathbf{5 . 1 7}$
INV	7500	234.8	No data

Running Times in R (deg=163)

Operation	BITSLICE $(* 32)$ $[\mu \mathrm{s}]$	BITSLICE $(* 1)$ $[\mu \mathrm{s}]$	NORMAL $(* 1)$ $[\mu \mathrm{s}]$
ADD	3099	96.84	231
SUB	3314	103.7	168
MUL	5224000	163250	144000
Karatsuba MUL	under construction	under construction	4100

How to count points -SST Algorithm

- Sato-Skjernna-Taguchi(SST) Alghorithm
- Time complexity: $\mathrm{O}\left(\mathrm{N}^{\wedge} 3.5\right)$
- Memory complexity: $\mathrm{O}\left(\mathrm{N}^{\wedge} 2.5\right)$
- The process is following,
- Lift j-invariant from GF $\left(2^{\wedge} n\right)$ to R
- Determine the Kernel of 2-th Verschiebung V
- Let T The local parameter at the point at infinity. Then find the value $c^{\wedge} 2$ from expansion $\mathrm{V}(\mathrm{T})=\mathrm{ct}+\mathrm{O}(\mathrm{T} \wedge 2)$
- Find an integer t satisfying $t^{\wedge} 2=\operatorname{Norm}\left(c^{\wedge} 2\right)$
- Finally we get $\# \mathrm{E}=1+2^{\wedge} \mathrm{n}-\mathrm{t}$!

Isogeny (Endomorphism)

- (definition) A rational map which is furthermore a group homomorphism

Hasse's Theorem

- Hasse's Theorem(1934)

$$
\begin{gathered}
\# E=2^{N}+1-t \\
-2 \sqrt{2^{N}}<t<2 \sqrt{2^{N}}
\end{gathered}
$$

- What is " t " ??

$$
\varphi \circ \varphi+[t] \circ \varphi+\left[2^{N}\right]=[0]
$$

φ :Frobenius endomorphism
[m]:m-maps

The little Frobenius

- 2-th power Frobenius (the little Frobenius) σ is defined as follows.

$$
\begin{aligned}
& \sigma: P(x, y) \mapsto\left(x^{2}, y^{2}\right) \\
& \overbrace{}^{E_{0}}{ }^{\sigma_{N-1}} \\
& \varphi=\sigma_{0} \sigma_{1} \cdots \sigma_{N-1}
\end{aligned}
$$

Canonical lift of E

- The canonical lift of an ordinary elliptic curve E is unique elliptic curve $\mathrm{E} \uparrow$ defined over R , which satisfies:
- The reduction of $E \uparrow$ is E.
$-\operatorname{End}(E)=\operatorname{End}(E \uparrow)$

Modular polynomial and lifting j-inv

- 2-th modular polynomial is defined as: $\Phi_{2}(X, Y)=X^{3}+Y^{3}-X^{2} Y^{2}+2^{4} \cdot 3 \cdot 31\left(X^{2} Y+X Y^{2}\right)$
$-2^{4} \cdot 3^{4} \cdot 5^{3}\left(X^{2}+Y^{2}\right)+3^{4} \cdot 5^{3} \cdot 4027 X Y+2^{8} \cdot 3^{7} \cdot 5^{6}(X+Y)-2^{12} \cdot 3^{9} \cdot 5^{9}$
- If two Elliptic curves E and E' are related via a cyclic isogeny of degree N ,

$$
\Phi_{2}(j(E), j(E))=0
$$

- (Lubin-Serre-Tate)If J is the j -invariant of the canonical lift of E,then there is a unique J in R such that

$$
\Phi_{2}(J, \Sigma(J))=0 \quad \text { and } \quad J \equiv j \quad \bmod 2
$$

Lift the j-invariant

- The process of lifting the j -invariant is iterative Newton's method.

$$
\begin{aligned}
\text { for }(\text { int } i & =0 ; i<\text { PRECISION } ; i++)\{ \\
x & =\Sigma(J) \bmod 2^{i+1} ; \\
J & =J-\frac{\Phi_{2}(x, J)}{\partial_{x} \Phi_{2}(x, J)} \bmod 2^{i+1} ; \\
& \}
\end{aligned}
$$

Lifting the Kernel of Σ

- The Kernel of Σ is 2-torsion point of $\mathrm{E} \uparrow$ i.e. infinity and another non-trivial point.
- x coordinates of non-trivial point can be computed by j -invariant of $\mathrm{E} \uparrow$ and $\mathrm{E}^{\prime} \uparrow$.

$$
\frac{x}{2}=-\frac{\left(J^{\prime 2}+195120 J^{\prime}+4095 J+660960000\right) / 2^{12}}{\left(J^{\prime 2}+J^{\prime}(563760-512 J)+372735 J+8981280000\right) / 2^{9}}
$$

Computing the trace

- Let \boldsymbol{T} be the local parameter of $E \uparrow$ around infinity then, $\Sigma(\mathrm{T})$ can be expanded as:

$$
\Sigma(\tau)=c \tau+\mathrm{O}\left(\tau^{2}\right)
$$

- c is computed by:

$$
c^{2}=\frac{J-(504+12096 z) t}{J+240 t}
$$

where, $z=x / 2, t=\left(12 z^{2}+z\right)(J-1728)-36$

- Trace t is square root of

$$
t^{2} \equiv \prod_{0 \leq i \leq N} c^{2} \quad \bmod 2^{\text {PRECIIION }-1}
$$

Applicable??

- INPUT j-invaritant $\in \operatorname{GF}(2 \mathrm{~N})$

OUTPUT trace $\in Z_{2}$ \downarrow
It's easy to translate bit-slice representation to normal one.

- Algorithm has NO Condition branche. \downarrow
- .We can apply bit-slice technique!

Running Times over GF(2^7)

Irreducible polynomial	$\mathbf{t}^{\wedge} 7+\mathbf{t}+\mathbf{1}$
curve	$\mathbf{Y}^{\wedge} \mathbf{3}+\mathbf{x y}=\mathbf{x}^{\wedge} \mathbf{3 + 1 / \mathbf { j }}$
\mathbf{j}-invariant	$\mathbf{t}^{\wedge} 5+\mathbf{t + 1}$
trace precise (work precise)	$\mathbf{2}^{\wedge} \mathbf{6}\left(\mathbf{2}^{\wedge} \mathbf{1 7}\right)$
trace	$\mathbf{- 3}$
\#E	$2^{\wedge} 7+1-3=126$
Time	$1.454 / 32=0.0454[\mathrm{~s}]$

Future works

- Counting points on EC over Large extension fields
- Implementing Karatsuba method
- Implementing faster algorithm of Lifting the j invariant and Norm computing

Addition in Z_{2}

- Let $x, y \in Z_{2}$ be 2-adic integers,then 2-elements addition is represented as following.

$$
\begin{array}{ll}
x=x_{0} b^{0}+x_{1} b^{1}+x_{2} b^{2}+\cdots+x_{n-1} b^{n-1}+\cdots & 0 \leq x_{i} \leq b \\
y=y_{0} b^{0}+y_{1} b^{1}+y_{2} b^{2}+\cdots+y_{n-1} b^{n-1}+\cdots & 0 \leq y_{i} \leq b \\
x+y=
\end{array}
$$

- (4n-5) times XOR operation and (5n-9) times AND operation are needed for 2 -adic integers addition which precision is $n(n>2)$.

