放射方向,到来方向,遅延時間,ドプラ変動,偏波情報を 同時に推定する時空間チャネルサウンダ

東京工業大学 電気電子工学専攻 中谷 勇太 阪口 啓 高田 潤一 荒木 純道

研究背景

遅延時間,到来方向,放射方向以外の伝搬パラメタは?

ドプラ変動, 偏波情報

放射方向,到来方向,遅延時間,ドプラ変動,偏波情報を 同時に推定する時空間チャネルサウンダの実装方法の提案

時空間チャネルサウンディングのイメージ図

サウンダの原理1

サウンダの原理 2

放射方向推定は送信側の実空間軸と周波数軸を用いる

マルチキャリア数3つマルチキャリア間隔f [Hz]送信アンテナエレメント数2つ

各素子間の周波数数は一般的に f/Ms

キャリア周波数に比べて fは十分小さい

ESPRIT

(Estimation of Signal Parameters via Rotational Invariance Techniques)

推定パラメータ (第 i 素波)

パラメータ設定 1

$$R = 500[m]$$

$$\frac{\pi R^2}{2} = \int_0^r 2\pi r dr$$
$$r = \frac{R}{\sqrt{2}} = 350[m]$$

角度拡がりが10°(=5°)とすると $\tan \alpha = \frac{x}{r}$ x = 30[m]

パラメータ設定 2

a =	332[m]
b =	324[m]

	経路 1	経路 2	経路 3
伝搬距離 [m]	350	354	362
遅延時間 [ns]	1167	1180	1207
ドプラ周波数 [Hz]	325	230	162

入力データ 3波到来時

	1波目	2波目	3波目
放射方向 [deg]	0	-45	60
到来方向 [deg]	0	-3	4
遅延時間 [ns]	1167	1180	1207
ドプラ周波数 [Hz]	325	230	162

シミュレーションの環境

中心周波数は 5.85 [GHz]

送受のアンテナ素子は半波長間隔に5本ずつ

マルチキャリア間隔は 50 [kHz] 間隔に 5 本

間欠受信間隔は1[ms] で5ポイント

コヒーレントな波を想定

(3 X 3) 次元の部分行列空間で重み付けが 一様なスムージングを実行

試行回数 100 回

100 スナップショット

SNR = 20 [dB]

	1波目	2波目	3波目	分散 [%]
放射方向 [deg]	0.001	-45.002	59.998	0.01
到来方向 [deg]	0.0019	-2.9935	4.0045	0.01
遅延時間 [ns]	1166.8	1179.8	1206.9	0.02
ドプラ周波数 [Hz]	324.996	229.994	162.001	0.002

試行回数 100 回

100 スナップショット

SNR = 15 [dB]

	1波目	2波目	3波目	分散 [%]
放射方向 [deg]	0.00	-45.00	59.99	0.5
到来方向 [deg]	0.0027	-2.9955	4.0013	0.06
遅延時間 [ns]	1166	1181	1207	0.3
ドプラ周波数 [Hz]	324.99	230.01	162.02	0.09

シミュレーション結果3

試行回数 100 回

100 スナップショット

SNR = 10 [dB]

	1波目	2波目	3波目	分散 [%]
放射方向 [deg]	0.01	-44.9	60.0	1.0
到来方向 [deg]	0.002	-3.016	3.995	0.1
遅延時間 [ns]	1159	1180	1213	0.9
ドプラ周波数 [Hz]	324.9	229.8	161.8	0.5

試行回数 100 回

100 スナップショット

SNR = 5 [dB]

	1波目	2波目	3波目	分散 [%]
放射方向 [deg]	0.02	-44.8	60.1	5.9
到来方向 [deg]	0.03	-3.04	3.97	1.1
遅延時間 [ns]	1153	1182	1215	1.9
ドプラ周波数 [Hz]	325	230	162	4.8

放射方向推定結果

Direction of Departure [deg]

到来方向推定結果

遅延時間推定結果

ドプラ周波数推定結果

偏波情報 (第 i 素波)

4D Unitary ESPRIT で4つのパラメタを推定した後

偏波情報 (第 i 素波)

偏波情報 (第 i 素波)

 $\begin{bmatrix} G_{\theta}^{r}(\phi_{i}^{r})A_{i}^{\theta\theta}G_{\theta}^{s}(\phi_{i}^{s})\gamma_{\theta} + G_{\theta}^{r}(\phi_{i}^{r})A_{i}^{\theta\phi}G_{\phi}^{s}(\phi_{i}^{s})\gamma_{\phi} \\ G_{\phi}^{r}(\phi_{i}^{r})A_{i}^{\phi\theta}G_{\theta}^{s}(\phi_{i}^{s})\gamma_{\theta} + G_{\phi}^{r}(\phi_{i}^{r})A_{i}^{\phi\phi}G_{\phi}^{s}(\phi_{i}^{s})\gamma_{\phi} \end{bmatrix}$ $= \left| \begin{array}{c} x_i^{\theta\theta} + x_i^{\theta\phi} \\ x_i^{\phi\theta} + x_i^{\phi\phi} \end{array} \right|$ $A_{i}^{\theta\theta} = \frac{x_{i}^{\theta\theta}}{G_{\theta}^{r}(\phi_{i}^{r})G_{\theta}^{s}(\phi_{i}^{s})\gamma_{\theta}} \qquad A_{i}^{\theta\phi} = \frac{x_{i}^{\theta\phi}}{G_{\theta}^{r}(\phi_{i}^{r})G_{\phi}^{s}(\phi_{i}^{s})\gamma_{\phi}}$ $A_{i}^{\phi\theta} = \frac{x_{i}^{\phi\theta}}{G_{\phi}^{r}(\phi_{i}^{r})G_{\theta}^{s}(\phi_{i}^{s})\gamma_{\theta}} \qquad A_{i}^{\phi\phi} = \frac{x_{i}^{\phi\phi}}{G_{\phi}^{r}(\phi_{i}^{r})G_{\phi}^{s}(\phi_{i}^{s})\gamma_{\phi}}$

まとめ

4D Unitary ESPRIT を用いたパラメタ推定の 実装方法を提案した

シミュレーションにより動作確認

電波暗室での動作実験