移動通信研究グループ合同輪講

アレー信号処理におけるSpatial Signature推定と 多重散乱波環境におけるアレー最適信号合成への応用

July 03, 2001

荒木研究室 鄭 重 植

Contents

- Research Backgrounds and Objectives
- Data Model for Array Antenna Signal Processing
- Expression of Spatial Signature by Extended Array Mode Vector
- Joint Estimation for DOA and Angular Spread
 - MUSIC & ESPRIT algorithms with EAMV
 - Spatial Signature Estimation & Evaluation
- Robust Optimal Signal Combining Techniques
 - DCMP¹ & ZF² Algorithms using EAMV Estimates
 - Performance Analysis & Evaluation
- Conclusions

Motivation

Demands on Mobile Communications Systems

Expectation to Spatial Signal Processing

- Maximization in SINR
- Decrease in BER
- Optimal Design of Communication Systems

Technologies

- → Estimation of Spatial Signature for Mobile Channel
- → Signal Combining Techniques

Background (1)

Mobile Communication Environments

Background (2)

Mobile Communication Environments

Background (3)

• DOA Estimation based on Plane Waves Model

- Causing Modeling Errors in Angular Spread Environment

- Degradation of Estimation Performance of Spatial Signature
 - Obstracles to Signal Waveforms Recovery & SINR Maximization
- Requiring Robust DOA & AS Estimators against Realistic Environments

Related Research (1)

Problem of Estimating AS

- Effects of Multipath-Induced AS on DOA estimators
 - → T. Sorelius et.al., (Proc. IEEE/IEE Int. Workshop, 1995
- Estimation of Nominal DOA and AS

 \rightarrow T. Trump & B. Ottersten (Signal Processing, 1996)

Low Complexity Estimators

→ Bengtsson & B.Ottersten (IEEE Trans. SP, 2001)

- Effects of Local Scattering DOA estimation with MUSIC & ESPRIT
 → D.Asztely & B.Ottersten (ICASSP, 1998)
- Effects of Local Scattering on DOA estimation with MUSIC

→ D.Asztely & B.Ottersten (IEEE, 1999)

Related Research (2)

Problem of combining Signals in AS environments

• An Adaptive Array for Mobile Communication Systems

 \rightarrow S. Anderson et.al., (IEEE Trans. VT, 1991)

• Modified Array Manifold for Signal Waveform Estimation

→ D.Asztely & B.Ottersten (Proc. 30th Asilomar Conf., 1996)

• Signal Waveform Estimation in AS Environment

→ M. Bengtsson & B.Ottersten (Proc. 30th Asilomar Conf.,1996)

Objectives

- To cope with Modeling Errors of DOA Estimators in AS
- To obtain More Accurate Spatial Signature(SS) Estimates
- To provide Robust Signal Combining Technique in AS Environments

Proposal for Optimal Signal Combining using EAMV

(1) Slow Fading Environments modeled by Local Scattering.(2) Spatial Signal Processing at BS.

Proposals for Joint Estim. of

DOA & AS \rightarrow SS Estim.

Spatial Processing at Base Station

A brief description of mobile channel related to AS

Frequency Flat Channel $T_s >> T_m$				
No AS $\sigma_{\theta} = 0$	Narrow AS	$\sigma_{\theta} << \theta_{_{3\mathrm{dB}}}$	Wide AS	
	Slow Fading	Fast Fading	$\sigma_{\theta} \geq \theta_{3dB},$	
	$T_c >> T_o$	$T_c \approx T_o$	$\boldsymbol{U}_{\theta} \approx \boldsymbol{U}_{3dB}$	
Plane Wave Model	Conv. Approach (1)	Conv. Approach (2)	???	
Frequency Selective Channel $T_s \approx T_m$				
Spatial and Temporal Model				

Local Scattering Model

Data Model in Scattering Environments

Conventional Approach

k = 1

Assumptions for Data Model

Assumptions for Data Model

Multiple Clusters Environments

Extended Array Mode Vector (EAMV)

Comparison (1)

First-Order Approximation of Spatial Signatures

Comparison (2)

How the AS can be obtained ?

Statistical Property in Spread Parameter

Summary

- Proposal of EAMV representing Inst. DOA & Inst. AS
- The EAMV incorporates $\mathrm{Im}\{\zeta_1\}$ into AS.
- Range of the first-order approx. \rightarrow limited to the small AS
- The EAMV is applicable to many DOA estimation algorithms.
- It is expected to be effective parameters in the slow fading environments

: Signal Waveform Estimation in AS Environment

→ M. Bengtsson & B.Ottersten (Proc. 30th Asilomar Conf.,1996)

Review for Parameter Estimation Algorithms

EAMV

MUSIC for Joint Estimation of DOA & AS

Array Manifold over Complex Angle Planes -- Trace of EAMV --

Example of Estimates (Inst. DOA & Inst. AS)

ESPRIT for Joint Estimation of DOA & AS

- Two Identical Subarray
- Translational Invariance Principle

Estimation Performance

- Instantaneous DOA and AS Estimates
- Proximity of True Spatial Signature
 - One Signal Case
 - Multiple Signals Case

1 Proximity Evaluation to Spatial Signature

5 Error due to Finite Samples collected to obtain Sample Covariance Matrix

Simulation Conditions (1)

Type of Antenna	Uniform Linear Array Antenna	
Number of Elements	Variable	
Interelement Spacing	A Half of Wavelength	
DOAs	0 (deg) / -10, 10 (deg)	
Number of Scattered Waves	32	
Angular Distribution	Gaussian Distributed at BS	
Angular Spread (AS) : $oldsymbol{\sigma}_{_{ heta}}$	Variable	
Snapshots / burst	127, Variable (BPSK)	

Instantaneous DOA Estimates

Instantaneous AS Estimates

Conv. MUSIC

6

Estimated AS (deg)

June 15, 2001

Evaluation of First-Order Moment $\sigma_{\theta} = 2.0 \text{ (deg)} \qquad E \left[\hat{\theta}_{m} - \theta_{m} \right]$

1 Proximity Evaluation to Spatial Signature

5 Error due to Finite Samples collected to obtain Sample Covariance Matrix

Proximity Evaluation (1)

Proximity Evaluation (2)

Error due to Finite Samples

Effect on Increase of Antenna Elements

June 15, 2001

Summary

- Proposal of MUSIC & ESPRIT for Joint Estimation (DOA & AS)
- Proximity Evaluation from Spatial Signature Estimates
 - Estimation Performance of MUSIC & ESPRIT
- It showed that the large-size antenna itself in the AS environment does not always improve the estimation performance.
- The data fitting errors in both MUSIC & ESPRIT are less than the error due to first-order approximation.
- In the AS, the error due to finite samples is not dominant.
- The statistical analysis for the estimator is required.

Spatial Processing at Base Station

Robust Optimal Signal Combining Technique Based on EAMV

(1) Review for Signal Combining Techniques

(2) Directionally Constrained Minimization of Power (DCMP)

(3) Zero-Forcing (ZF)

(4) Performance Evaluation

(5) Summary

Review for Signal Combining Techniques

Methods based on Reference Signal

MMSE

Methods based on DOA Information

- Conventional Beamforming
- Null Steering Beamforming (ZF)
- LCMV¹ (MVDR or DCMP)

Related Research (2)

Problem of combining Signals in AS environments

• An Adaptive Array for Mobile Communication Systems

 \rightarrow S. Anderson et.al., (IEEE Trans. VT, 1991)

Modified Array Manifold for Signal Waveform Estimation

→ D.Asztely & B.Ottersten (Proc. 30th Asilomar Conf., 1996)

• Signal Waveform Estimation in AS Environment

→ M. Bengtsson & B.Ottersten (Proc. 30th Asilomar Conf., 1996)

Zero Forcing (ZF)

$$\hat{\mathbf{s}}(t) = \arg \min_{\mathbf{s}(t)} \|\mathbf{x}(t) - \mathbf{V}\mathbf{s}(t)\|^{2}$$
$$\hat{\mathbf{s}}(t) = (\mathbf{V}^{H}\mathbf{V})^{-1}\mathbf{V}^{H}\mathbf{x}(t) \qquad \mathbf{V} = [\mathbf{v}_{1}, \mathbf{v}_{2}]$$
$$\hat{\mathbf{w}}_{zf} = [\mathbf{V}(\mathbf{V}^{H}\mathbf{V})^{-1}]_{1\text{st column}}$$
$$\hat{\mathbf{w}}_{zf} = \arg \max \text{Output SNR subj. to } \mathbf{w}^{H}\mathbf{v}_{2} = \mathbf{w}$$

June 15, 2001

0

Max. SINRs (Theoretical Values)

Max. SINRs (Theoretical Values)

Simulation Conditions (2)

- DOA and AS Estimates : from MUSIC
- DOAs : -10, 10 (deg)
- Evaluation for Four Spatial Signature
 (1). True SS (Spatial Signature) V
 (2). EAMV Estimates a (θ̂_m + j Δθ̂_m)
 (3). AMV with only DOA Estimates a (θ̂_m)
 (4). AMV with Nominal DOA a (θ_m)

(0) Ideal Case that Covariance & Spatial Signature are perfectly known

(3). AMV with only DOA Estimates

- An Adaptive Array for Mobile Communication Systems
 → S. Anderson et.al., (IEEE Trans. VT, 1991)
- Modified Array Manifold for Signal Waveform Estimation
 → D.Asztely & B.Ottersten (Proc. 30th Asilomar Conf., 1996)
- Signal Waveform Estimation in AS Environment
 → M. Bengtsson & B.Ottersten (Proc. 30th Asilomar Conf.,1996)

Performance Evaluation in AS Environment (1) – Infinite Samples, L=3

Performance in AS Environment (2) 127 Samples, L=3

Performance in AS Environment (3) 127 Samples, L=6

Sensitivity Evaluation of Algorithms

Definition of Corr. Coeff. between Weight Vectors

$$\boldsymbol{\rho}_{\mathbf{w}} = \frac{\left\| \mathbf{w}_{(0)}^{H} \mathbf{w}_{(i)} \right\|}{\left\| \mathbf{w}_{(0)} \right\| \left\| \mathbf{w}_{(i)} \right\|}$$

(i)=(1), (2), (3), (4)

Sensitivity of ZF in AS Environment (1)

Sensitivity of DCMP in AS Environment (2)

Regularization of Covariance Matrix : DCMP (Diagonal Loading)

$\overline{\mathbf{R}} = \hat{\mathbf{R}} + \alpha_n \mathbf{I}$

Regularization of Covariance Matrix : DCMP 127 Samples, L=6

Effect of Number of Antenna Elements

Effect of Number of Antenna Elements

Beam Pattern of Array Antenna

June 15, 2001

Input SNR : 6.9, Input INR : 29.8

62

Beam Pattern of Array Antenna

June 15, 2001

Variation of Beam Pattern by Regularization

Input SINR : -22.9, Input SNR : 6.9, Input INR : 29.8

Output SINR

```
ZF (NDOA) : 1.2, ZF(EDOA) : 1.3,
```

ZF (EAMV) : 3.3, **ZF (True SS) : 14.6**

DCMP(NDOA): -10.9, DCMP (EDOA): -2.0

```
DCMP (EAMV) : -1.03, DCMP (True SS) : 10.7
```

DCMP Reg

(NDOA): 13.2, (EDOA): 13.4

(EAMV) : 13.6, (True SS) : 13.8

Conclusions

- It is expected to reduce considerably model errors in algorithms based on the plane wave data model.
- The applicability to other superresolution algorithms is also expected..
- Proximity Evaluation from Spatial Signature Estimates
- It follows that the proposed method can obtain more accurate SS estimates than the case using only the DOA.
- Proposal of Optimal Signal Combining Techniques using EAMV Estimates.
 - \rightarrow Reduction of the effect due to weight perturbations
 - → Enhanced SINR Performance.