空間サンプルデータを用いた散乱体の部分再構成について

成瀬洋介[†], 高田潤一[†]

†東京工業大学大学院理工学研究科 〒152-8550 東京都目黒区大岡山 2-12-1-S6-4 E-mail: †{naruse, takada}@ap.ide.titech.ac.jp

1 背景

屋内・屋外での電波電波環境の解析・モデル化は,ア ダプティブアレー,アンテナダイバーシチ,MIMO 伝 送などの空間的な伝搬特性を利用し,アレーアンテナを 用いた通信方式の検討に必要とされ,研究されている. その中でも MUSIC や ESPRIT[1], ISI-SAGE[2][3][4] などの到来方向推定の手法を利用した解析 [5][6] では, 基本的には観測した空間サンプリングベクトルを,平 面波や球面波のモードベクトル (ステアリングベクト ル) で分解することを目的としている.よって解析結 果は伝搬の様子を平面波や球面波などの単純な波の重 ね合わせとして表現されることになる.しかし,実際 には伝搬環境には複雑な形状の散乱体が存在し,それ らから発生した複雑な散乱波も同様に,球面波などに 分解されることになってしまい,それらの分解された 波から散乱波を構成するものを選んで特徴付けること が検討されている.例えば,これまでは球面波の散乱 中心の分布をクラスタリングすることによって散乱波 を表現することがなされてきたが,本研究では散乱波 をより数学的に定式化する手法の基礎的な部分を検討 する.

今回提案する手法では,散乱波は散乱体周囲の電磁 場によって表現される.これは,もし散乱体の周囲の 電磁場が観測によって推定できたならば,その散乱体 を外部から観測した場合の特性が全て分かるためであ る.このような,空間サンプリングなどの観測によっ て,離れた場所の波面を推定する手法として,ホログ ラフィー [7] (波面の完全な再構成)があるが,これは 必要とされるサンプリングが完全に与えられた状況で のものであり,実際問題としては散乱体周囲の電磁場 を完全に再構成できるほどの観測ができることは稀れ である.

よって,提案する手法では,散乱体周囲の電磁場の

Clustering of Scattering Center

図 1: 散乱中心のクラスタリングと提案手法の模式図

成分のうち,それを観測した範囲内で,部分的にどの 程度のことが分かるのか,また散乱体モデルとして利 用する場合,モデルとしてどの程度の情報を持ってい るのかを数学的に定式化し,それに関するモデル化の 手法や推定手法を,信号・画像復元[8]などの分野で研 究されてきたヒルベルト空間上の数学や情報量基準・ モデル選択などの手法を利用して解決するアプローチ を提案する.

2 問題の定式化

2.1 散乱波の観測

ここでは,散乱体の観測や推定を線形逆問題として 定式化する.これは信号・画像復元の分野での手法を

図 2: 問題の定式化

参考にしたものであり,詳しくは文献[8]を参考にされたい.

散乱波を観測する手法として,離散的なサンプリン グを想定する.これは例えば,

(a) アンテナの位置を少しずつ動かして測定

(b) アンテナの指向性を少しずつ変えて測定

などが考えられる.具体的な例では,(a)は合成開口, (b)は鋭い指向性を持つアンテナを回転させる方法に 相当する.

簡単のため, Z 軸方向に一様な 2 次元の問題として 議論を進めることにする.図(2)のように散乱体を,場 所 r_i に配置した指向性 $D_i(\hat{k}(r, r_i))$ のアンテナで観測 する状況を考える.ここで, $\hat{k}(r, r_i)$ は r_i からrへの 方向ベクトルである.散乱体の周囲を境界Sで囲い, 外部から観測した場合の境界上の等価二次波源分布を f(r)とし,散乱体以外に等価波源がないと仮定すると, このときアンテナが受信する複素電圧は,

$$g_i = \int_{\boldsymbol{r} \in S} f(\boldsymbol{r}) D_i(\hat{k}(\boldsymbol{r}, \boldsymbol{r}_i)) G(\boldsymbol{r} | \boldsymbol{r}_i) \mathrm{d}\boldsymbol{r}$$
(1)

と表現できる.上式において, $G(r|r_i)$ は波動方程式のグリーン関数である.

ここで,式(1)の積分を以下のように定義された関 数空間 L₂上の内積であると考える.

$$\langle f,g \rangle \equiv \int_{\boldsymbol{r} \in S} f(\boldsymbol{r}) \overline{g(\boldsymbol{r})} \mathrm{d}\boldsymbol{r}$$
 (2)

ただし, $\overline{g(r)}$ はg(r)の複素共役を示す.以降,一般 にヒルベルト空間(完備な内積空間)上の問題として定 式化する. 内積を利用すると,式(1)は次のように表現できる.

$$g_i = \langle f, K(\boldsymbol{r}|\boldsymbol{\theta}_i) \rangle, \tag{3}$$

$$K(\boldsymbol{r}|\boldsymbol{\theta}_i) \equiv D_i(\hat{k}(\boldsymbol{r},\boldsymbol{r}_i))G(\boldsymbol{r}|\boldsymbol{r}_i)$$
(4)

ここで, $K(\mathbf{r}|\boldsymbol{\theta}_i)$ は式 (1)の積分核であり, $\boldsymbol{\theta}_i = (\mathbf{r}_i, D_i(\hat{k}))$ は積分核を特徴付ける全てのパラメータであり,いわば観測条件である.

観測として N 個のサンプリングをそれぞれ条件 $\theta_1, \theta_2, \cdots, \theta_N$ で行い,観測された複素電圧をそれぞ れ g_1, g_2, \cdots, g_N とすると, $g = (g_1 g_2 \cdots g_N)^T \in \mathbb{C}^N$ として,

$$= Af, \qquad A = \sum_{i=1}^{N} e_i \otimes \overline{K(\boldsymbol{r}|\boldsymbol{\theta}_i)}$$
(5)

と表現できる.ただし, e_i は \mathbb{C}^N の標準基底, $(\cdot \otimes \overline{\cdot})$ は Neumann-Schatten 積¹ である.これは,二次波源 分布 f を作用素 A で観測すると,観測結果 g が得ら れるというものであり, A は観測作用素又はサンプリ ング作用素と呼ばれる.

一般に観測に伴いノイズ $\varepsilon \in \mathbb{C}^N$ が加法的に混入することから,

$$g = Af + \varepsilon \tag{7}$$

の関係が成り立つ.

g

以降本文中において,観測は場所を変えてのみという場合が頻出するが,その場合には θ_i を観測場所 r_i に置き換えて $K(r|r_i)$ のように表記する.さらに指向性を考えない場合では,具体的には,

$$K(\boldsymbol{r}|\boldsymbol{r}_i) \equiv H_0^{(2)}(k\|\boldsymbol{r}-\boldsymbol{r}_i\|)/4j$$
(8)

のように第2種 Hankel 関数を利用する.

$$(f \otimes \overline{g})h = \langle h, g \rangle f \quad \text{for} \quad \forall h \in H_2$$

さらに, Neumann-Schatten 積には次のような性質がある.

- $(f \otimes \overline{g})^* = g \otimes \overline{f}$ ただし, $(f \otimes \overline{g})^*$ は $f \otimes \overline{g}$ の共役作用素である.
- $(f \otimes \overline{g})(u \otimes \overline{v}) = \langle u, g \rangle (f \otimes \overline{v})$

 $^{{}^1}H_1, H_2$ をヒルベルト空間として, プラケットを H_2 上の内積とすると, Neumann-Schatten 積は, 任意の元 $f \in H_1, g \in H_2$ について,次のように定義される.

2.2 線形逆問題

前述したように,散乱波モデルを求めることは観測 データ g より f を求めることである.式(7)のような 一般に A の逆が存在せず,ノイズも存在するような線 形逆問題を解く手法は,これまでにいろいろ研究され てきている.[8] それらの手法では,

$$f = Xg \tag{9}$$

のように線形作用素 X を作用させて f を求めるが, X を選ぶ基準として,推定値 f をオリジナルの f(以降 f₀ と表記)にどのような基準で近づけるのかを定義し て求めている.今回の問題においても, f の散乱波モ デルとしての良さを定義して,それを小さくするよう に X を選ばなくてはいけない.

2.3 散乱波モデルの良さの基準

散乱波モデルに求められる条件を考えてみると、

- (a) モデルは観測データgをもとに構成されるが,構成されたモデルを再びAで観測した場合,なるべく元のgに近いものが得られるのが望ましい.
- (b) モデル化することによって、モデルを作るために 利用していない(実際に観測していない)観測条件 においても、観測結果がある程度正確に予測でき るのが望ましい.

(b) はモデルは一般化されている,つまり汎化能力を 持つのが望ましいという意味である.モデルの汎化能 力を評価するものとして汎化誤差があるが,これはモ デルの起こり得る全ての推定誤差を足し合わせたもの であり,小さいほど良いモデルであるとされる.

今回の場合,モデルによって推定されるのは観測値 であり,モデルをいろいろな条件で観測した場合の誤 差の平均を汎化誤差と定義することにする.

アンテナ位置が r_0 の場合に,真の境界上の波源分 布 f_0 の場合に観測される複素電圧 $g_0(r_0)$ と,推定し た波源分布fの場合に観測される複素電圧 $g(r_0)$ の二 乗誤差は、

$$||g_{0}(\boldsymbol{r}_{0}) - g(\boldsymbol{r}_{0})||^{2}$$

$$= || < f_{0}, K(\boldsymbol{r}|\boldsymbol{r}_{0}) > - < f, K(\boldsymbol{r}|\boldsymbol{r}_{0}) > ||^{2}$$

$$= || < f_{0} - f, K(\boldsymbol{r}|\boldsymbol{r}_{0}) > ||^{2}$$
(10)

3

図 3: 汎化誤差の説明

となる.ここで例えば図 (3) のように,モデルとして 利用される範囲の観測条件として,観測場所を D 内と 制限した場合,推定誤差の D 内での平均を考えると, 式 (10) をアンテナ位置に関して D 内で積分し,さら に,式 (7) のように,観測時にノイズ ε が混入する場 合には,ノイズによる推定値 f のバラツキを考えて, ノイズによる平均をとって,汎化誤差は,

$$\begin{split} J_0 &= \operatorname{E}_{\varepsilon} \int_{\boldsymbol{r}_0 \in D} \| < f_0 - f, K(\boldsymbol{r} | \boldsymbol{r}_0) > \|^2 \mathrm{d} \boldsymbol{r}_0 \\ &= \operatorname{E}_{\varepsilon} \int_{\boldsymbol{r}_0 \in D} \left\| \left(1 \otimes \overline{K(\boldsymbol{r} | \boldsymbol{r}_0)} \right) (f_0 - f) \right\|^2 \mathrm{d} \boldsymbol{r}_0 \\ &= \operatorname{E}_{\varepsilon} \int_{\boldsymbol{r}_0 \in D} < \left(1 \otimes \overline{K(\boldsymbol{r} | \boldsymbol{r}_0)} \right) (f_0 - f), \\ & \left(1 \otimes \overline{K(\boldsymbol{r} | \boldsymbol{r}_0)} \right) (f_0 - f) > \mathrm{d} \boldsymbol{r}_0 \\ &= \operatorname{E}_{\varepsilon} \int_{\boldsymbol{r}_0 \in D} < \left(K(\boldsymbol{r} | \boldsymbol{r}_0) \otimes \overline{K(\boldsymbol{r} | \boldsymbol{r}_0)} \right) \\ & (f_0 - f), (f_0 - f) > \mathrm{d} \boldsymbol{r}_0 \\ &= \operatorname{E}_{\varepsilon} < W(f_0 - f), (f_0 - f) > \\ &= \operatorname{E}_{\varepsilon} \| f_0 - f \|_W^2, \end{split}$$

$$W = \int_{\boldsymbol{r}_0 \in D} K(\boldsymbol{r}|\boldsymbol{r}_0) \otimes \overline{K(\boldsymbol{r}|\boldsymbol{r}_0)} d\boldsymbol{r}_0$$
(11)

となり,作用素 Wによる重みつき二乗ノルムとなる. ここで, E_{ε} はノイズ ε に関する平均である.

この J_0 が小さくなるようにモデルを求めることに なるが,ここで注意しなくてはならないのは, J_0 が小 さくなるように推定された f は,必ずしも真の波源分 布 f_0 に近いとは限らないということである.あくま でもそれを観測した値が近いかどうかで評価している ためである. J_0 を最小にすることは,重みつき最小二 乗問題であるともいえる. 式 (11) では,モデルとして利用する観測場所は連続的な領域でも評価できるが,重積分が必要であるため,評価する領域が離散的な M 個のサンプリング点 $D = \{p_1, p_2, \cdots, p_M\}$ である特別な場合も考えておく.この場合は積分が に変わるだけであり,さらに 各点での誤差の平均を考える場合,

$$W = \frac{1}{M} \sum_{i=1}^{M} K(\boldsymbol{r}|\boldsymbol{p}_i) \otimes \overline{K(\boldsymbol{r}|\boldsymbol{p}_i)}$$
(12)

となる.さらに特別な場合として,評価する点が観測 点と同じ場合,つまり $D = \{r_1, r_2, \cdots, r_N\}$ では,

$$W = \frac{1}{N}A^*A \tag{13}$$

と表現できる.

SIC による散乱波のモデル選択

3.1 情報量基準とモデル選択

汎化誤差である式(11)は、その式中に本来未知で ある真の波源分布 f₀が入っていて、そのままでは評 価できない.このように、本来評価できない汎化誤差 を近似的に評価するものが情報量基準であり、統計の 分野ではAIC(Akaike's Information Criterion)[9]な どが有名である.AICはモデルとして確率分布を扱っ ているので、汎化誤差として確率分布の近さを測る Kullback-Leibler情報量を評価している.しかし今回 汎化誤差は、式(11)のようにヒルベルト空間上のノ ルムとして表現されているため、SIC(Subspace Information Criterion)[10][11][12]という情報量基準を利 用する.

MDL(Minimum Description Length) 原理として知 られているように,一般にモデルの自由度が大きくな ると観測点における尤度は大きくなるが,自由度が大 きすぎると過学習 [13] と呼ばれる現象で,汎化能力は 低下してしまう.これを避けるために適切なモデルの 自由度を求めるのがモデル選択である.

3.2 カーネル回帰モデル

SIC ではモデルをカーネル回帰モデル², つまり複数の基底関数の線形結合によって表現したものとして

定式化されている.具体的には,波源分布 f₀ を近似 する自由度 pのモデルとして,

$$f(\mathbf{r}) = \beta_1 \psi_1(\mathbf{r}) + \beta_2 \psi_2(\mathbf{r}) + \dots + \beta_p \psi_p(\mathbf{r}) \qquad (14)$$

のように表現して, $\beta_1, \beta_2, \dots, \beta_p$ は,そのモデルのパ ラメータとなる.つまり,モデルは関数空間 H の部分 空間 $S = \text{span}\{\psi_i(\mathbf{r})\}_{i=1}^p$ となっている.ここで一般 に,式 (5)(9) のような体系では,モデル S は,

$$\mathcal{S} \subseteq \mathcal{R}(A^*) \tag{15}$$

となるように選ばなくてはならないことが知られている. [8][14][15] ここで, $\mathcal{R}(A^*)$ は作用素 A^* の値域³ である.これは f_0 の $\mathcal{R}(A^*)^{\perp} = \mathcal{N}(A)$ に属する成分は Aによっては観測できないことに起因している.

このようなモデルでは基底関数の数がモデルの自由 度となるが,まずモデルの自由度が与えられたとき, どのように基底関数を選べばいいのかを検討する.

作用素 A の特異値分解は次のように表現される.

$$A = \sum_{i=1}^{N} \lambda_i \left(\boldsymbol{u}_i \otimes \overline{\varphi_i(\boldsymbol{r})} \right), \quad |\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_N| (16)$$

ここで, $u_i, \varphi_i(r), \lambda_i$ はそれぞれ, $\mathcal{R}(A) \subseteq \mathbb{C}^N, \mathcal{R}(A^*) \subseteq H$ を張る正規直交基底とそれに対応する特異値である.

これはつまり, g = Af を考えると, f の各 $\varphi_i(\mathbf{r})$ に 沿う成分がそれぞれ λ_i 倍されて, g の u_i に沿う成分 として観測されるということであり, p 次元のモデル を考えるならば, 固有関数 $\varphi_i(\mathbf{r})$ のうち,最も強調し て観測されることになる,対応する特異値が大きいも のから順に p 個の固有関数の線形結合によって表現す るのが妥当だと考えられる.よって, p 次元のモデル として部分空間 $S_p = \operatorname{span}{\{\varphi_i(\mathbf{r})\}_{i=1}^p}$ を利用すること にする.また明らかに, $S_p \subseteq \mathcal{R}(A^*)$ である.

次に,モデル S_p による f_0 の最良近似を与える推定 作用素 X_p は,ノイズが無い環境において,

$$X_p = A^* Y_p, \qquad Y_p = \sum_{i=1}^p \frac{1}{|\lambda_i|^2} \left(\boldsymbol{u}_i \otimes \overline{\boldsymbol{u}_i} \right) \qquad (17)$$

空間ではないため,弱干定式化が異なっている.また,今回は汎化 誤差のノルムに重み Wがついている点も異なっている. ³作用素 $A \in \mathcal{B}(H_1, H_2)$ について Aの値域と零空間はそれぞれ,

$$\mathcal{R}(A) = \{g|g = Af, \quad f \in H_1\}$$
$$\mathcal{N}(A) = \{f|Af = 0, \quad f \in H_1\}$$

で定義される.

²SIC においてのモデルは,再生核ヒルベルト空間とされていて, 基底関数はその再生核となるが,今回はモデルが再生核ヒルベルト

で与えられることを示す.

 X_pA に式 (17) と Aの特異値分解を代入して計算すると,

$$X_{p}A = \sum_{i=1}^{N} \overline{\lambda_{i}} \left(\varphi_{i}(\boldsymbol{r}) \otimes \overline{\boldsymbol{u}_{i}}\right) \sum_{j=1}^{p} \frac{1}{|\lambda_{j}|^{2}} \left(\boldsymbol{u}_{j} \otimes \overline{\boldsymbol{u}_{j}}\right)$$
$$\sum_{k=1}^{N} \lambda_{k} \left(\boldsymbol{u}_{k} \otimes \overline{\varphi_{k}(\boldsymbol{r})}\right)$$
$$= \sum_{i=1}^{p} \varphi_{i}(\boldsymbol{r}) \otimes \overline{\varphi_{i}(\boldsymbol{r})} = P_{\mathcal{S}_{p}}$$
(18)

となり,部分空間 S_p への直交射影作用素となる. f_0 の部分空間 S_p 内での最良近似を与えるのは, f_0 の S_p への直交射影つまり, $P_{S_p}f_0$ であるので, X_p はモデル S_p による f_0 の最良近似を与える作用素だと言える.

次に, $J_0 \in SIC$ で評価するために, 文献 [10] の手法 と同様にして $J_0 \in S$ 解する.式 (15) より明らかであ るが,モデル S_p はどのように選んでも最大で $\mathcal{R}(A^*)$ であるので, f_0 は次のように,本質的にモデルによっ て近似できる部分とできない部分に一意に分解される.

$$f_0 = f_{\mathcal{S}} + f_{\mathcal{S}}^{\perp}, \quad f_{\mathcal{S}} \in \mathcal{R}(A^*), \quad f_{\mathcal{S}}^{\perp} \in \mathcal{R}(A^*)^{\perp}$$
(19)

 f_S はモデルによって近似可能な成分, f_S^{\perp} はモデルによって近似不可能な成分となる.これを汎化誤差の式 (11) に代入して,

$$J_{0} = E_{\varepsilon} \|f_{0} - f\|_{W}^{2} = E_{\varepsilon} \|f_{\mathcal{S}} + f_{\mathcal{S}}^{\perp} - f\|_{W}^{2}$$
$$= E_{\varepsilon} \|f_{\mathcal{S}} - f\|_{W}^{2} + \|f_{\mathcal{S}}^{\perp}\|_{W}^{2} \qquad (20)$$
$$(\because f \in \mathcal{S}_{p} \subseteq \mathcal{R}(A^{*}))$$

のように分解できる.式 (20)の第2項は,モデルやfの選び方によっては変化しないため無視し,第1項を J_1 とおき,これをSICで評価することになる.

ところで, $f_{\mathcal{S}} \in \mathcal{R}(A^*)$ であることより,

$$f_{\mathcal{S}} = A^* \alpha \tag{21}$$

と表現できる.ここで, $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_N)^T$ は f_S と等価な情報を持つベクトルであるが,これは f_0 が未知であるので,同様に未知である.

J₁の定義式に式 (21)(9)(17) (12) を代入して変形す

ると ,

$$J_{1} = E_{\varepsilon} ||f_{\mathcal{S}} - f||_{W}^{2} = E_{\varepsilon} ||A^{*}\alpha - X_{p}g||_{W}^{2}$$

$$= E_{\varepsilon} ||A^{*}(\alpha - Y_{p}g)||_{W}^{2}$$

$$= E_{\varepsilon} < WA^{*}(\alpha - Y_{p}g), A^{*}(\alpha - Y_{p}g) >$$

$$= E_{\varepsilon} < AWA^{*}(\alpha - Y_{p}g), (\alpha - Y_{p}g) >$$

$$= E_{\varepsilon} < B(\alpha - Y_{p}g), (\alpha - Y_{p}g) >$$

$$= E_{\varepsilon} ||\alpha - Y_{p}g||_{B}^{2} \qquad (22)$$

$$B = AWA^{*}$$

$$= \frac{1}{M} \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{k=1}^{N} \left(e_{i} \otimes \overline{K(r, r_{i})} \right)$$

$$\left(K(r, p_{j}) \otimes \overline{K(r, p_{j})} \right) (K(r, r_{k}) \otimes \overline{e_{k}})$$

$$= \frac{1}{M} \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{k=1}^{N} \langle K(\boldsymbol{r}, \boldsymbol{p}_{j}), K(\boldsymbol{r}, \boldsymbol{r}_{i}) \rangle \langle K(\boldsymbol{r}, \boldsymbol{r}_{k}), K(\boldsymbol{r}, \boldsymbol{p}_{j}) \rangle e_{i} e_{k}^{\mathrm{T}}$$
(23)

以上を踏まえて, J_1 をモデル S_p についてSIC [10][11][12]によって評価すると,

$$SIC = \|(Y_p - Y_N)g\|_B^2$$

-tr $[B(Y_p - Y_N)Q(Y_p - Y_N)^*]$ + tr $(BY_pQY_p^*)$
where $Q = E_{\varepsilon} (\varepsilon \otimes \overline{\varepsilon})$ (24)

となる . Q はノイズ ε の共分散行列である . 式 (24) に おいて , $Y_N = (AA^*)^{-1}$ が α の不偏推定量を与える ($\alpha = E_{\varepsilon}Y_Ng$) ことを利用している . (不偏推定量にな ることについては文献 [10] を参照)

さらに式 (24) において, ノイズが白色で $Q = \sigma^2 I$ と表現される場合,かつ汎化誤差の評価点が観測点と 同じ場合を考えると,式 (13) を代入して整理して,

SIC =
$$\frac{1}{N} \left(\sum_{i=p+1}^{N} \| \langle g, u_i \rangle \|^2 - \sigma^2 N + 2\sigma^2 p \right)$$
 (25)

となる.ここで, u_i は式 (16)にある Aを特異値分解 した際のベクトルである.

4 シミュレーション

シミュレーションで想定した状況として,周波数は 5.2GHz,2次元の問題として, $K(r|\theta_i)$ には式(8)を 使い,アンテナによるサンプリングは原点から順に+x 軸方向に 0.4λ 間隔で 20 点とした.散乱体は,中心を (-3,3)[m] として,任意の半径で円形の境界を配置した. 等価波源としては,(10,10)[m]の位置に電流源がある 場合に,完全導体の円柱による散乱波の厳密解を利用 した.

4.1 作用素 A の特異値の評価

散乱体の境界の大きさや観測の条件によって,どの ように A の特異値の大きさが変化するのかを調べる. 式 (16) より,作用素の特異値の大きさは,

$$AA^*\boldsymbol{u}_i = |\lambda_i|^2 \boldsymbol{u}_i \tag{26}$$

のように,行列 *AA**の固有値から求められることを 利用する.*AA**は式(5)より,次のように計算する.

$$AA^* = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(e_i \otimes \overline{K(\boldsymbol{r}|\boldsymbol{r}_i)} \right) \left(K(\boldsymbol{r}|\boldsymbol{r}_j) \otimes \overline{e_j} \right)$$
$$= \langle K(\boldsymbol{r}|\boldsymbol{r}_j), K(\boldsymbol{r}|\boldsymbol{r}_i) \rangle e_i e_j^{\mathrm{T}}$$
(27)

図 (4) に,散乱体の半径を変えた際の $|\lambda_i|$ を大きい順から並べたものを示す.ただし,各場合について比較しやすくするために各特異値は,それぞれその最大のものとの比で表した.傾向として,散乱体が小さくなるほど,特異値の大きさは少ない次元に集中するようになり,例えば,半径5cmの場合には,観測されたサンプリングベクトルは,ほぼ3次元の空間に入っているだろうと予測される.これは散乱体が点状散乱体にまで小さいものを仮定した場合,それによる散乱波は球面波となり,観測されるベクトルは球面波のモードベクトル,つまり散乱中心を固定した場合,自由度は1にまで小さくなることから考えて妥当なことである.

4.2 汎化誤差と情報量基準の比較

SIC によって評価した汎化誤差が,実際にシミュレーションによって得られた汎化誤差の近似となっているかどうか調べる.図(5)は,横軸をモデルの次元,縦軸を推定誤差の平均(推定誤差と観測値の大きさの比)として両者をプロットしたものである.散乱体半径は20cm, ノイズは散乱波に対しての比で20dBとしている.汎化誤差の評価としては,評価点として $(2.2\lambda, -0.2\lambda)$ から+x方向に 0.4λ 間隔で8点,+y方向に 0.4λ 間隔

図 4: 作用素 A の特異値の大きさの比較

で2点の格子上,合計16点により汎化誤差の重みW を式(12)として,式(24)によって評価した.

グラフより,情報量基準による推定は本来の誤差を 下回る傾向にあるが,これは式(20)の誤差のうち,第 2項を評価していないためだと考えられる.また,散 乱体の大きさが小さい方が両者はよく一致する傾向に ある.

4.3 モデルの最適な自由度の選択

図 (6)(7) に, 散乱体の大きさやノイズの大きさを変 えた際の, 各モデルに対する情報量基準を式 (25) に よって評価したものを示す.傾向として, 散乱体半径 が小さくなるほど, 少ない次元でより正確な推定がで きるようになる.散乱体が小さい場合には, 図 (6) の 半径 8cm の場合のように, 次元が大きすぎると観測時 のノイズの影響で逆に推定誤差が大きくなるという影 響が顕著に見られる.また,図(7)と比較して, ノイ ズが少なくなると,より正確に推定できるようになり, 最適であるモデルの次数は大きいほど良くなる傾向が 支配的になる.

5 結論と今後の方針

本研究では,散乱波モデルを散乱体周囲の等価波源 分布として表現する手法を提案し,それをモデル化す

図 6: ノイズ 20dB においてのモデル自由度と情報量基準 図 7: ノイズ 30dB においてのモデル自由度と情報量基準

7

図 5: 半径 20cm ノイズ 20dB においての実際の汎化 誤差と情報量基準の比較

るための手法として,カーネル回帰モデルや情報量基 準 SICを導入した.また,シミュレーションによって, 散乱波モデルの最適な自由度は一般的に,想定する散 乱体の大きさが小さいほど小さくなるという結果を得 た.これは例えば,アンテナから散乱体を観測する際 に,アンテナから臨む散乱体の大きさが,アンテナの ビーム幅の何倍くらいかによって観測できる情報量が 決まるという直感的な結果から考えても妥当なもので ある.

今後の方針としては、

- (1) 観測に条件をつけての一般的な3次元の問題への 拡張.
- (2) 散乱体が伝搬環境上に複数存在している場合に, それぞれをどのように推定するのか,またモデルの選択方法.
- (3) モデルを少ないサンプリングで効率的に推定する ための最適なサンプリング位置の見当付けへの 応用.
- (4) 観測したサンプリングデータから,空間上に配置 されている散乱体の位置や大きさ推定への応用.
- (5) 具体的な観測データを必要としないで散乱体の大きさや配置だけからの伝搬環境の推定.

などについて,このようなアプローチで検討していく 予定である.

参考文献

- R. Roy and T. Kailath, "ESPRIT Estimation of Signal Parameters Via Rotational Invariance Techniques", *IEEE Trans. Signal Processing*, Vol. 37, No. 7, pp. 984–995, Jan. 1989.
- [2] B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. I. Pedersen, "Channel Parameter Estimation in Mobile Radio Environments Using the SAGE Algorithm", *IEEE J. Selected Areas in Communications*, Vol. 17, No. 3, pp. 434–449, Mar. 1999.
- [3] J. A. Fessler and A. O. Hero, "Space-alternating Generalized Expectation-maximization Algorithm", *IEEE Trans. Signal Processing*, Vol. 42, pp. 2664–2677, Oct. 1994.
- [4] C. C. Chong, D. I. Laurenson, C. M. Tan, S. McLaughlin, M. A. Beach and A. R. Nix, "Joint Detection-Estimation of Directional Channel Parameters Using the 2-D Frequency Domain SAGE Algorithm with Serial Interference Cancellation", in COST 273 Temporary Document, TD(02)026, Espoo, Finland, Sept. 2002.
- [5] Katsuyuki Haneda and Jun-ichi Takada, "High-Resolution Estimation of NLOS Indoor MIMO Channel with Network Analyzer Based System", 2003 International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2003), Sept. 2003 (Beijing, China).
- [6] Katsuyuki Haneda and Jun-ichi Takada, and Takehiko Kobayashi, "Spatio-Temporal Characterization of Line-of-Sight and Room-to-Room Propagation in Home Environments with Ultra Wideband Signal", URSI-F Meeting, Yokohama, Japan
- [7] 北吉 均、"ホログラフィ法による電磁波放射と 伝搬の可視化"、電学論A, vol.118-A, no. 6, p. 605, June 1998.

- [8] 小川 英光、"講座:信号と画像の復元"、信学誌、vol.71、no5-8、pp491-497,593-601,739-748,828-835、May-Oct. 1988.
- [9] H.Akaike, "A new look at the statistical model identification" IEEE Transactions on Automatic Control, AC-19(6):716-723, 1974.
- [10] M.Sugiyama and K.-R. Muller, "The subspace information criterion for infinite dimensional hypothesis spaces", J.Machine Learning Research, vol.3, pp323-359, Nov. 2002.
- [11] M.Sugiyama and H.Ogawa, "Subspace information criterion for model selection", Neural Computation, vol.13, no.8, pp1863-1889, 2001.
- [12] M.Sugiyama, "Improving precision of the subspace information criterion", IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol.E86-A, no.7, pp.1885-1895, 2003.7.
- [13] 小川 英光、 "過学習の理論"、 信学論 (D-II),
 vol.J76-D-II, no.6, pp.1280-1288 (1993.6)
- [14] 小川 英光,原 昌司, "部分射影フィルタによる 画像復元",信学論, Vol.J71A, No.2, pp.527-534, Feb. 1988.
- [15] 小川 英光,原昌司,"部分射影フィルタの諸性質"
 信学論,Vol.J71A, No.2, pp.527-534, Feb. 1988.