Fractional Base Station Cooperation Cellular Network

Naoki Kusashima

Tokyo Institute of Technology, Department of Electrical and Electronic Engineering, Araki-Sakaguchi Laboratories.

Contents

Background

- Cell-edge problem
- Conventional solution for the cell-edge problem
- Base station cooperation

Base station cooperation block diagonalization multi-user MIMO

- Combination of multi-user
- Cooperative region

Fractional base station cooperation cellular network

- Fractional Base Station Cooperation
- Dynamic clustering
- Numerical simulation
- Conclusion

Cell-edge problem

If user at the cell-edge location

- Low SNR
- Co-channel interference from adjacent BSs
- High antenna correlation

Conventional solution for cell-edge problem

Conventional solution

- Frequency reuse
 - Each BSs uses different frequency channel from surrounding cells.
 - × It causes degrading of system throughput.
- Interference cancellation using terminal adaptive array
 - cancels interference by terminals.
 - It requires many antennas to perform multiplexing and cancellation at the same time.

Base station cooperation

Base Station Cooperation (BSC)

- BSC transmits multiple streams to cooperate with adjacent BSs.
- There are no problems of nor inter-cell interference nor high antenna correlation.
- ➢ BSC single-user (BSC-SU)
 - For single user
 - ***** BSC-SU wastes many resources to a user.
- >BSC multi-user (BSC-MU)
 - For multiple users
 - ✓ BSC-MU uses resource more efficient than BSC-SU.

Transmission model of (K_{BS},M)×(K_{MS},N) BSC-MU-MIMO

 d_i : distance between *i*th BS and *i*th user g_{ij} : pathloss between *j*th BS and *i*th user

• Receive signal of *i*th user $\mathbf{y}_i = \mathbf{H}_{i1}\mathbf{x}_{i1} + \mathbf{H}_{i2}\mathbf{x}_{i2} + \dots + \mathbf{H}_{iK_{BS}}\mathbf{x}_{iK_{BS}} + \mathbf{n}_i = \mathbf{H}_i\mathbf{Q}_i\widetilde{\mathbf{V}}_i\mathbf{s}_i + \mathbf{n}_i$

 \mathbf{y}_i : receive signal vector \mathbf{H}_{ij} : channel matrix \mathbf{Q}_i : precodir
block dia \mathbf{x}_{ij} : transmit signal vector \mathbf{h}_i : noise vector \mathbf{V}_i : precodir
block dia \mathbf{s}_i : transmit data signal vector \mathbf{h}_i : noise vector \mathbf{V}_i : precodir
block dia

- \mathbf{Q}_i : precoding matrix of block diagonalization
- $\widetilde{\mathbf{V}}_{i}$: precoding matrix of SVD-MIMO

Precoding matrix Q

 $\begin{bmatrix} \mathbf{H}_{1}^{T}, \dots, \mathbf{H}_{i-1}^{T}, \mathbf{H}_{i+1}^{T}, \dots, \mathbf{H}_{K_{\mathrm{MS}}}^{T} \end{bmatrix}^{T} = \mathbf{H}_{\backslash i} \qquad \operatorname{svd}(\mathbf{H}_{\backslash i}) = \mathbf{U} \begin{bmatrix} \Sigma & \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{\backslash i}^{\parallel} & \mathbf{Q}_{i} \end{bmatrix}^{\mathrm{H}}$

Block diagonalization

• We decompose the channel matrix into fading matrix and pathloss matrix

$$\mathbf{H}_{i} = \begin{bmatrix} \mathbf{H}_{i1} & \mathbf{H}_{i2} \end{bmatrix} = \begin{bmatrix} \mathbf{H}_{i1}^{\text{iid}} & \mathbf{H}_{i2}^{\text{iid}} \end{bmatrix} \begin{bmatrix} \mathbf{G}_{i1} & \mathbf{O} \\ \mathbf{O} & \mathbf{G}_{i2} \end{bmatrix} = \mathbf{H}_{i}^{\text{iid}} \mathbf{G}_{i} \qquad \mathbf{H}_{ij}^{\text{iid}} : \text{fading matrix} \\ \mathbf{G}_{ij} = \sqrt{g_{ij}} \mathbf{I}$$

- Block diagonalization precoding matrix of BSC $\mathbf{Q}_{i} = \mathbf{H}_{j\neq i}^{\perp} = \frac{1}{\left\|\mathbf{G}_{j\neq i}^{-1}\right\|_{F}} \mathbf{G}_{j\neq i}^{-1} \left(\mathbf{H}_{j\neq i}^{\text{iid}}\right)^{\perp} \qquad \mathbf{H}_{j\neq i}^{\text{iid}} \left(\mathbf{H}_{j\neq i}^{\text{iid}}\right)^{\perp} = \mathbf{O} \left\|\mathbf{H}_{i}\mathbf{Q}_{j\neq i} = \mathbf{O}\right\|_{F}$
- Receive signal of *i*th user $\mathbf{y}_{i} = \mathbf{H}_{i}\mathbf{Q}_{i}\widetilde{\mathbf{V}}_{i}\mathbf{s}_{i} + \mathbf{n}_{i} = \widetilde{\mathbf{H}}_{i}\widetilde{\mathbf{V}}_{i}\mathbf{s}_{i} + \mathbf{n}_{i}$ $\widetilde{\mathbf{H}}_{i} = \mathbf{H}_{i}\mathbf{Q}_{i} = \frac{1}{\left\|\mathbf{G}_{j\neq i}^{-1}\right\|_{F}}\mathbf{H}_{i}^{\text{iid}}\mathbf{G}_{i}\mathbf{G}_{j\neq i}^{-1}\left(\mathbf{H}_{j\neq i}^{\text{iid}}\right)^{\perp} = \sqrt{\frac{g_{11}g_{22} + g_{12}g_{21}}{g_{j\neq i1} + g_{j\neq i2}}}\widetilde{\mathbf{H}}_{i}^{\text{iid}}$ $\widetilde{\mathbf{H}}_{i}^{\text{iid}} : \text{The equivalent fading matrix of$ *i* $th user}$

• Transmit power from *j*th BS $P_j = E[\mathbf{x}_j^H \mathbf{x}_j] \le \Omega P$

- Power normalization factor
 - Ω regulates the transmit power

$$\Omega = \begin{cases} \frac{1}{\frac{g_{12}}{g_{11} + g_{12}}} & d_1 \ge d_2 \\ \frac{1}{\frac{g_{11}}{g_{11} + g_{12}}} & \frac{g_{21}}{g_{21} + g_{22}} \\ \frac{1}{\frac{g_{11}}{g_{11} + g_{12}}} & d_1 \le d_2 \end{cases}$$

 Ω : power normalization factor

$$P : \text{maximum BS transmit power} \\ \mathbf{x}_{j} = \left[\mathbf{x}_{1j}, ..., \mathbf{x}_{K_{\text{MS}}j}\right]$$

- Average receive SNR of *i*th user $\gamma_{i} = \frac{E\left[\left|\widetilde{\mathbf{H}}_{i}\widetilde{\mathbf{V}}_{i}\mathbf{s}_{i}\right|^{2}\right]}{M\sigma^{2}} = \frac{g_{11}g_{22} + g_{12}g_{21}}{g_{j\neq i1} + g_{j\neq i2}}\frac{\Omega P}{\sigma^{2}}$
 - Capacity of *i*th user

$$C_i = \sum_{k=1}^2 \log_2(1 + \lambda_k \gamma_i)$$

 λ_k : *k*th eigenvalue of equivalent channel

Power normalization factor Ω

Cooperative region

Analysis considering overhead is necessary

Overhead : the cost of resource for transmission

(ex. Reference signal, guard band, cyclic prefix)

Spectral efficiency

$$R^{\rm SC} = \chi_{\rm SU} C^{\rm SC}$$
$$R^{\rm MC} = \chi_{\rm MU} C^{\rm MC}$$

 \mathcal{X} : bandwidth inefficiencies considering overhead

Cell-inner

- Non-cooperative region
 - Single-cell MIMO is efficient at cell-inner

Cell-edge

- Cooperative region
 - BSC MIMO is efficient at cell-edge

Fractional Base Station Cooperation

- Single-cell MIMO (conventional cellular system)
 - Cell-inner : efficient
 - Cell-edge : not efficient
- Base station cooperation MIMO
 - Cell-inner : not efficient
 - Cell-edge : efficient

- Cell-inner: uses single-cell MIMO
- Cell-edge: uses BSC MIMO

FBSC is performed to achieve gains both at the cell-inner and cell-edge.

Cooperation clustering

Clustering

- Static clustering
 - Cooperation set is fixed
 - **×** By-product cell-edge is created.
- Dynamic clustering
 - makes cooperation set adaptively.
 - ✓ Cooperation is efficient at all cell-edges.

Dynamic clustering

Fractional base station cooperation cellular network

Fractional base station cooperation cellular network

Fractional base station cooperation

Dynamic clustering

Simulation scenario

Comparison transmission

- Single-cell SISO
- Single-cell MIMO
 - 2x2 SVD-MIMO
- Multi-cell static clustering
 - BSC is performed at all locations
 - Static clustering
- Fractional Base Station
 Cooperation Cellular Network
 (FBSC-CN)

Cooperative region Cooperative region at 19-cell scenario Cooperative region Non-cooperative region

17

Simulation scenario

Simulation parameter

Parameters	Values
Number of cell	19 cells
Number of user	10 users / cell
Number of cooperation set	3 cells
Number of antenna (BS, user)	1, 1 (SISO) or 2, 2 (MIMO)
Channel model	i.i.d. Rayleigh
Pathloss model	34.5 + 35log ₁₀ (<i>d</i> [m]) [dB] (3GPP TR 25.996 : Urban Macro)
Transmit power	40[dBm]
Noise level	-100[dBm]
Site to site distance	1000 m
Scheduler	Round-robin & co-scheduling
Single-user MIMO scheme	SVD-MIMO
Multi-user MIMO scheme	Generalized BD [*]

* V. Stankovic, M. Haardt, "Generalized design of multi-user MIMO precoding matrices," *IEEE Trans. Wireless Commun., vol.7, no.3,* pp.953-961, Mar. 2008.

Simulation result

Fractional BSC

- User capacity at the cell-inner is as high as Singlecell MIMO
- User capacity at the cell-edge is almost the same with BS cooperation

Simulation result

FBSC is higher capacity than other scheme at all probability

Simulation result

Average cell spectral efficiency and cell-edge spectral efficiency (shadow fading standard deviation = 8[dB])

- The average cell spectral efficiency of FBSC is slightly improved than single-cell MIMO
- The cell-edge user spectral efficiency of FBSC is 2.4 times as high as that of single-cell MIMO

Conclusion

- BSC solves the cell-edge problem.
- Fractional BSC is proposed.
 - FBSC performs to achieve gains both at the cell-inner and cell-edge.
- FBSC cellular network is proposed.
 - In FBSC-CN, cooperation sets are constructed dynamically.
- Numerical simulation shows that FBSC performs efficiently both at cell-inner and celledge.

Thank you for your attention.