The Influence of Antenna Directivity on Accuracy of UWB Ranging

Marzieh Dashti Tokyo Institute of Technology, Japan

MCRG Seminar

Introduction (1)- ToA based ranging

- UWB signals allow accurate ranging using ToA techniques.
- Among reported ToA estimation schemes, threshold-based ToA estimators have attracted interest due to simplicity.
- *M.Dashti et al. (PIMRC,Sep-09)*: a threshold-based ToA estimation approach was proposed which minimize the range error by setting the threshold as a function of delay.

Introduction (2) - ToA based ranging

ToA estimation algorithm:

□ Received samples are compared to an appropriate threshold.

□ Set the threshold as a function of delay.

□ First sample crossing the respective threshold value is estimated as ToA .

Tx and Rx nodes are positioned at known coordinates (assumed they are synchronized)

Tx-Rx measured distance: $d = \tau_{\text{FAP}} \times c$ Ranging error: $e = d - d_r$ propagation delay of first-arrival-path (FAP)

Introduction (3)- Measurement scenario ΤV TV A database of UWB CIR measurements at 3.1-10.6 GHz VNA Positioner in an office room was collected. Chairs 7600 mm 9080 mm Desk \checkmark 5 × 5 array formed on horizontal plane Table ✓ Array measurement performed in 168 positions Sofa \checkmark In total 4200 spatial samples measured on Tx ✓ Inter-array distance 500 mm 5100 mm \checkmark Inter-element spacing in the array is 25 mm 7010 mm Rx antenna (fixed) Tx antenna 700 Metal wall 6000 5000 4000 800 3000 600 2000 * * Y[mm] 1000 400 200 1000 2000 3000 4000 5000 X[mm]* * 0 -200 -100 100 200 300 400 500 600 700 0 4 X[mm]

Outline

Purpose of this work:

 Investigate antenna radiation pattern effect on ToA estimation (using the existing measurement data)

Steps:

- Existing data is re-processed to create an arbitrary form of pattern.
 - Considering only the 2-D azimuthal pattern
- ToA estimation algorithm is applied to the new data set (resulting from modified pattern)
- The results of ranging analysis using data with and without antenna synthesizes are compared.

Patterns Synthesis

- Virtual array principle for generating different radiating patterns
 - Azimuthal radiation patterns of an antenna can be expressed as the Fourier expansion

$$E(\phi) = \sum_{m=-M}^{M} Q^{(m)} e^{jm\phi} = \sum_{m=-M}^{M} E^{(m)}(\phi)$$

If we are able to generate all modes independently using the virtual array, we can then generate any arbitrary patterns as a weighted sum of these mode patterns.

Synthesis of a dipole array pattern using the basis patterns

Synthesize patterns using exponential patterns as basis functions
 Determine the azimuthal pattern function with desired directivity
 A linear N-elements array of dipoles oriented along the z-axis

Effect of Antenna Pattern on Ranging Results

Repeating the ranging analysis with directional Tx antennas (using the virtual array principle)

- **T**x antenna point to the Rx
- **T**x antenna point to the random direction
- □ Rotating Tx antenna; relative directivity effect on ranging

Tx antenna point to the Rx

- In omni-directional case
 - □ greater variance
 - □ longer tail in CDF curve (greater maximum error)

Directional antenna \rightarrow reduction of error

 \Box transmitting power in only one direction \rightarrow reduces number of scatterers & angular spread

□ increases Ricean K factor \rightarrow increase probability of direct path being dominant path \rightarrow reducing missed path errors

□ greater delay between first and second multipaths \rightarrow some of the paths in between no longer exist \rightarrow facilitates detection of direct path

Small ranging errors are still observed!

 Enhancement of closely spaced multipath components → surrounding multipath components cross the threshold → challenging ToA estimation

Non-proper use of directive antenna

Properly use of a directive antenna \equiv Tx antenna beam point at the Rx

Problems with antenna orientation \rightarrow may degrade ranging performance

Investigate the effect of non-proper use of directive antenna

- □ Main-beam points to any arbitrary direction including direction of Rx
- Probability of pointing to true direction same as all the other directions

Tx antenna point to the random direction

non-proper use of directive antenna \equiv beam may point to wrong direction \rightarrow missing the signal power \rightarrow degrades ranging performance

Tx antenna point to the random direction

- signal comes from a side lobe direction \rightarrow small received signal
- null of antenna beam points at Rx → missing the signal power→ largest ranging errors
- ✓ noise & multipath enhancement → detection of noise as a multipath
 →negative errors (early false alarm)
- ✓ multipath components (after the DP) enhancement →large positive errors (miss the DP)

♦ directive antenna with larger beam width → more opportunity to observe the Rx→ better performance

Rotating the Tx antenna

 \rightarrow deviation of main beam from the direction of Rx \rightarrow directivity in direction of LoS varies Relative directivity \equiv antenna gain in the direction of LoS relative to the $D_{\rm LoS}$ main lobe antenna gain $D_{\rm r} =$ Rx D_{\max} 2 2-element directional 3-element directional 1.5 σ [m] 0.5 -2.5 -2 -1.5 -0.5 0 -1 D_r 15

Summary

Two types of ranging errors in dense multipath environment

- missed path errors
- early false alarm errors

Properly oriented directional antenna \rightarrow reduction of number of received multipaths \rightarrow increase probability of DP being dominant path \rightarrow standard deviation of errors decreases