Nonlinear Analysis of Direct Sampling Mixer using F-matrix

Tokyo Institute of Technology Araki - Sakaguchi Lab Kousuke Aio

2010/7/16

TOKYO INSTITUTE OF TECHNOLOGY

TOKVO INSTITUTE DE TECHNOLOG

Content

TOKYO INSTITUTE OF TECHNOLOG

Background

Background

2010/7/16

Pursuing Excellence

TOKYO INSTITUTE OF TECHNOLOGY

Background

TOKVO INSTITUTE DE TECHNOLOG

Analysis with Fundamental Matrix

New Analysis Method

The <u>frequency conversion and Volterra series function</u> are introduced into **Fundamental matrix**.

Advantage

≻Complex circuit can be divided into some F-matrix. ⇒ <u>flexibility</u>≻Calculation of cascade connection is matrix calculation. ⇒ <u>easy</u>

Cascade Connection with F-matrix

Inverse of (1, 1) component ⇒ Frequency Characteristic : Vout/Vin

2010/7/16

Analysis with Fundamental Matrix

♦Approach

Nonlinear System

Volterra Series Function

➢Overall property of DSM can't be expressed as power series function because DSM have frequency characteristic . ⇒ Volterra Series

Nonlinear System

Cascade Connection of Volterra Series

Periodic Time-Variant System

Linear Periodic Time-Variant (LPTV) System

TOKYO INSTITUTE OF TECHNOLOG

Analysis of Charge Sampling Circuit

Nonlinearity of TA

➢Power series expansion is approximated from measurement of the prototype TA.

Analysis of Charge Sampling Circuit

Nonlinearity of MOS Switch

➤MOS transistor is dealt as ideal switch and nonlinear resistor.

Analysis of Charge Sampling Circuit

Analysis Procedure

Charge Sampling Circuit

2010/7/16

TOKVO INSTITUTE DE TECHNOLOG

Simulation

➢Simulation Parameter

				1
P_{in}	-15 dBm	Сн	40 pF	
<i>f</i> LO	500 MHz	C_0	0.3 pF	
			<u> </u>	
R_0	4 kΩ	Vg	0 ~ 1.8 V	Freq=fint + vm2
				Freq=fin2
Α	(Eq. 3)	R(t)	(Table.1)	

Input Frequency : fin1 + fLo and fin2 + fLo (2 tone signal)
⇒ Output Frequency are fin1, fin2, and 3rd harmonic signal are down converted near 3fin1 and 3fin2 due to nonlinearity.

LPTV System : Frequency Response

≻ First, we assume that charge sampling circuit is linear (a2=a3=0, ron2=ron3=0)

 \checkmark If input frequency is near *nf*_{LO}, MATLAB and ADS results are almost same.

NLPTV System : Frequency Spectrum

✓From frequency spectrum, small difference is shown between MATLAB and ADS, but <u>these are almost matched at fundamental and IMD3 components</u>.

NLPTV System : AM-AM Characteristic

✓ Difference between MATLAB and ADS is less than 0.5dB.
✓ IIP3 (3rd Input Intercept Point) is about -4 ~ -3dBm.

2010/7/16

TOKYO INSTITUTE OF TECHNOLOG

Conclusion and Future Work

Conclusion

➤The simple nonlinear periodic time-variant system can be analyzed with F-matrix, Volterra series function and Fourier series expansion.

➤When input frequency is near the clock frequency, this analysis has same result with circuit simulation result.

Future Work

Improvement of this analysis model (more exact, more complex circuit architecture)

>Invention of efficient distortion compensation method.

◆Volterra Inverse

>If G is inverse function of H, G can be expressed as this.

$$\begin{split} H_{1}(\omega_{1}) &= G_{1}^{-1}(\omega_{1}) \\ H_{2}(\omega_{1},\omega_{2}) &= \frac{-G_{2}(\omega_{1},\omega_{2})}{G_{1}(\omega_{1}+\omega_{2})G_{1}(\omega_{1})G_{1}(\omega_{2})} \\ H_{3}(\omega_{1},\omega_{2},\omega_{3}) &= \left\{ -G_{3}(\omega_{1},\omega_{2},\omega_{3}) + \frac{2G_{2}(\omega_{1},\omega_{2}+\omega_{3})G_{2}(\omega_{2},\omega_{3})}{G_{1}(\omega_{2}+\omega_{3})} / G_{1}(\omega_{1}+\omega_{2}+\omega_{3})G_{1}(\omega_{1})G_{1}(\omega_{2})G_{1}(\omega_{3}) \right\} \end{split}$$