Application of Real Zero Concept to Coherent Detector for Quadrature Amplitude Modulation

H. Ishibashi, H. Suzuki, K. Fukawa, and S. Suyama

Tokyo Institute of Technology

Outline

- Background
- Conventional concept: Baseband real zero process
- Proposed concept: Extension to RF signals
- Coherent detector employing real zero
- Simulation results
- Conclusion

Background

The Si-CMOS IC technology is rapidly advancing:

- · 60 GHz Si-CMOS elements will be commercially available soon.
- · Analog RF and digital baseband circuits will be integrated on a single chip.
- Low-voltage design will, however, degrade the analog circuit performance.

We apply Real Zero (RZ) concept to the coherent detection.

Concept of Baseband Real Zero (1) ⁴

Fourier series expansion of a periodic baseband signal r(t) is given by

$$r(t) = \sum_{k=-K_m}^{K_m} c(k)e^{j2\pi f_0 kt}$$

$$T : \text{Period}$$

$$f_0 = 1/T : \text{Fundamental frequency}$$

$$K_m f_0 : \text{Maximum frequency}$$

$$C(k) : \text{Fourier coefficients}$$

$$z = e^{j2\pi f_0 t}$$

$$z = e^{j2\pi f_0 t}$$

 $2K_m$ -th order polynomial with respect to z

2K_m roots can be classified into

 $\left\{ \begin{array}{l} 2K_r \text{ real roots: Real Zeros (RZ)} \\ 2(K_m - K_r) \text{ complex roots} \end{array} \right.$

When all the roots are real zero, r(t) can completely be recovered from them

Real Zero conversion : all the roots are transformed into RZs

Real Zero Conversion

Add a sinusoidal wave to r(t)

$$r_{z}(t) = r(t) + A_{u} \cos(2\pi K_{a} f_{0}t + \theta_{a})$$

= $z^{-K_{a}} 2^{-1} A_{u} e^{j2\theta_{a}} \prod_{k=1}^{2K_{a}} (z - e^{j2\pi f_{0}t_{k}})$

 $K_{a}f_{0}$: frequency of the wave (K_{a}f_{o}{>}K_{m}f_{0})

6

 A_u : amplitude of the wave

If $A_u > max[|r(t)|]$, $r_z(t)$ crosses the level zero $2K_a$ times.

Extension to RF Signals

Either frequency is allowed for the added carrier

 $r(t) = i(t)\cos(2\pi f_c t) - q(t)\sin(2\pi f_c t)$

Add a sinusoidal wave outside BPF-band.

$$r_{z}(t) = r(t) + A_{u} \cos(2\pi f_{a}''t)$$

= { $i(t) + A_{u} \cos(2\pi f_{a}t)$ } cos($2\pi f_{c}t$)
- { $q(t) + A_{u} \sin(2\pi f_{a}t)$ } sin($2\pi f_{c}t$)

All the roots of the in-phase and quadrature components become RZs.

A conventional method:RZ-SSB > Only for SSB Proposed method > Applicable to PSK, QAM

RZ Property Conservation

The RZ property in i(t) and q(t) does not change after the nonlinear amplification

The transmitted signal can be recovered from the RZ timing sequences of i(t) and q(t) after nonlinear amplification.

Coherent Detector Employing RZ ¹⁰

TDC: Time to Digital Converter

- · Add the sinusoidal wave in RF region
- · Limiter amplify and extract IQ baseband wave
- · Generate RZ sequences in baseband region

Robust to distortion in RF region.

Nonlinear Distortion of Amplifier

Time to Digital Converter

Simulation Conditions

Received signal: $r(t)$	Modulated signal
Modulation scheme	QPSK
Amplitude of constellation	1
Symbol duration	T_{S}
f_c/f_s	75
Roll-off	Raised cosine
Roll-off factor α	0.5
Added sinusoid: $r_a(t)$	$A_u \cos[2\pi (f_c + f_a)t]$
$f_a T_s$	2, 4
A_u	1.5
Amplifier gain: $G_p = 20 \log_{10} G$	from 0 to 65 dB
LPF	Two stages
Impulse response shape	Triangular pulse
Pulse width	$1.0\tau_{c}, 0.33\tau_{c}$
TDC	Linear interpolation
Digital sampling per symbol: p_d	40
Simulation	
Precision	Floating point (double)
Analog sampling per symbol: p_a	3, 840

Envelope of Input Received Signal

Polar (dB) representation

In 30 dB gain amplification · From -30 dB to 0 dB: Limiter amplification to 0 dB · Lower than -30 dB:

Linear amplification

Detected and Recovered Signals

Eye Pattern and Constellation of Recovered signal

Gain: 30 dB, $f_aT_s = 2$

Average EVM Versus Gain

Large f_a results in decrease in the average EVM.
EVM becomes constant in gain more than 25 dB.

Average EVM vs. Sampling Jitter

in the range $[-\Delta_j, \Delta_j]$ is added to the RZ timing.

 $f_a \Delta_j \leq 10^{-3}$ is necessary for small impairment in average EVM.

Conclusion

A coherent detector employing RZ has been proposed.

- The baseband RZ concept is extended to RF signal (modulated signals).
- The RZ concept requires the RZ conversion which adds a sinusoidal wave to outside of the modulated band before limiter amplification.
- Nonlinear amplification is applicable even to the linear modulation schemes (QAM, OFDM).

Computer Simulation

- Conditions
 - Raised cosine roll off QPSK signal, $f_aT_s = 2$
- Results
 - Gain 30 dB: Recovered signal EVM = 32 dB
 - Sampling jitter should be $f_a \Delta_j \leq 10^{-3}$