Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection

Kenichi Higuchi ${ }^{(1)}$ and Hidekazu Taoka ${ }^{(2)}$
${ }^{(1)}$ Tokyo University of Science ${ }^{(2)}$ NTT DOCOMO, Inc.

Experiments on Peak Data Rate for Future 4G Broadband Radio Access

4G Broadband Radio Access Network

Kenichi Higuchi, TUS/ Nov. 16, 2009.

- 4G Broadband Radio Access Network (IMT-Advanced)
- Will provide high-speed data services such as highdensity video/broadcast services and large-size data download at low cost
- IP-based radio access networks (RANs) satisfy the following technical requirements
- Very low latency (connection and transmission delays)
- High user data rates and high capacity
- Wide coverage area
- Precise QoS control (QoS: Delay, residual packet error rate, etc.)
- Low network cost
- Complementally use with 3G system and backward compatibility with existing legacy systems
Flexible packet-based access with high efficiency and affinity to IP-based core networks

Target Peak Data Rates for IMT-Advanced

Kenichi Higuchi, TUS/ Nov. 16, 2009.

- Target peak data rate is one of the most important requirements in radio access systems.
- Targets data rates specified in standardization or forum
- ITU-R Recommendation M. 1645
- Peak data rate of 100 Mbps in new mobile access under high mobility
- Peak data rate of 1 Gbps in new nomadic/local area wireless access under low mobility
- IST-2003-507581 in WINNER
(D7.1 v1.0 System Requirements (2004.07.16))
- Peak spectral efficiency in connected sites of $10 \mathrm{~b} / \mathrm{s} / \mathrm{Hz} /$ site in wide area deployments for heavy traffic loads
- Peak spectral efficiency in isolated (non-contiguous) sites of 25 b/s/Hz/site

Series of Experiments for IMT-Advanced

- Experimental demonstrations of target peak data rates for IMT-Advanced by NTT DOCOMO
- May 2003: Achieved 100-Mbps transmission in field experiments at the speed of $30 \mathrm{~km} / \mathrm{h}$ in downtown Yokosuka
- Peak data rate of 135 (300) Mbps using 16QAM (64QAM) modulation and Turbo code with $R=1 / 2$ (3/4)
- Aug. 2004: Achieved 1-Gbps transmission with 4-by-4 MIMO multiplexing in laboratory experiments using fading simulators (10 b/s/Hz)
- May 2005: Achieved 1-Gbps transmission in field experiments at the speed of $30 \mathrm{~km} / \mathrm{h}$ in downtown Yokosuka
- Peak data rata of 1.028 Gbps using 16QAM modulation and Turbo code with $R=8 / 9$
- Dec. 2005: Achieved 2.5-Gbps transmission with 6-by-6 MIMO multiplexing in field experiments at the speed of $10-30 \mathrm{~km} / \mathrm{h}$ in YRP district ($25 \mathrm{~b} / \mathrm{s} / \mathrm{Hz}$)
- Peak data rata of 2.556 Gbps using 64QAM modulation and Turbo code with $R=8 / 9$

MLD-based Signal Detection

Achieving Extremely High Data Rate

\square Achievable performance of the OFDM MIMO multiplexing is largely dependent on the signal detection scheme.

- Linear spatial filtering, successive interference canceller, and maximum likelihood detection (MLD)
MLD achieves the best transmission performance due to the largest diversity, especially when the transmitter

- OFDM (100-MHz bandwidth)
- 1.048 Gbps
- 4×4 MIMO multiplexing
- 16QAM
- Turbo coding rate, $R=8 / 9$
- 6 paths, r.m.s. delay spread $=0.26 \mu \mathrm{~s}, f_{D}=20 \mathrm{~Hz}$

There is no application environment in cellular systems if we employ MMSE filtering (maximum Geometry is approx. 25 dB)

Problem in MLD

Kenichi Higuchi, TUS/ Nov. 16, 2009.
\square MLD finds the ML symbol vector that achieves

$$
\mathbf{y}=\mathbf{H s}+\mathbf{n} \quad \checkmark \mathbf{s}_{M L}=\min _{\mathbf{s}_{\text {candidace }}}\left\|\mathbf{y}-\mathbf{H} \mathbf{s}_{\text {candidat }}\right\|^{2}
$$

- Major drawback of the MLD is its prohibitive computational complexity.
- Exponentially increased according to an increase in the number of bits per layer and the number of transmitter antenna branches (layers)

Number of squared Euclidian distance (SEDs) calculations

$$
N_{\text {search }}=2^{L N_{R}} \quad \begin{aligned}
& \text { • }: \text { Number of layers } \\
&
\end{aligned} N_{R}: \text { Number of bits per symbol }
$$

Example: $L=4$ and $N_{R}=4(16 \mathrm{QAM}) \rightarrow N_{\text {search }}=65,536$

Tree Search

\square Finding ML is performed on a search tree.

- Example
\checkmark Number of layers: $L=3$
\checkmark Number of bits per symbol: $N_{R}=1$ (BPSK)

There are $2^{L N_{\beta}}$ paths to be searched for finding the ML.

Orthogonalization of Transmitted Signal

Kenichi Higuchi, TUS/ Nov. 16, 2009.

- Original received signal $\mathbf{y}=\mathbf{H s}+\mathbf{n}$ does not allow for evaluation of each branch of the search tree.

\Rightarrow
Orthogonalization of the received signal vector based on QR decomposition on \mathbf{H}

$$
\begin{aligned}
\mathbf{y}=\mathbf{H s}+\mathbf{n} & \square \mathbf{z}=\mathbf{Q}^{H} \mathbf{y}=\mathbf{R} \mathbf{s}+\mathbf{Q}^{H} \mathbf{n} \\
& \mathbf{H} \Rightarrow \mathbf{Q R} \\
& \therefore \mathbf{R}^{H} \mathbf{R}=\mathbf{H}^{H} \mathbf{H}
\end{aligned}
$$

Contain all $s_{1}, \ldots, s_{L} \rightarrow$ used for evaluation of L-th \square layer's branches

Contain s_{L} only \rightarrow used for evaluation of first layer's branches

Tree Search Using Orthogonalized Signal

- Example

Kenichi Higuchi, TUS/ Nov. 16, 2009.
\checkmark Number of layers: $L=3$
\checkmark Number of bits per symbol: $N_{R}=1$ (BPSK)

$$
\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{ccc}
r_{1,1} & r_{1,2} & r_{1,3} \\
0 & r_{2,2} & r_{2,3} \\
0 & 0 & r_{3,3}
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right]+\left[\begin{array}{l}
n_{1}^{\prime} \\
n_{2}^{\prime} \\
n_{3}^{\prime}
\end{array}\right]
$$

$1^{\text {st }}$ layer: evaluated
by using z_{3}
$2^{\text {nd }}$ layer: evaluated by using z_{2}
$3^{\text {rd }}$ layer: evaluated by using z_{1}

Branch metric is measured by the squared Euclidian distance (SED) and path metric is the sum of branch metrics.

There are various computationally efficient tree search to find the ML symbol vector (node).

Sphere Detection

Kenichi Higuchi, TUS/ Nov. 16, 2009.
\square Sphere detection prioritizes the search in vertical direction of the tree (depth first search).

- Once some node has path metric below the threshold C, one of the succeeding branch is evaluated to calculate the path metric of the next node
- If the path metric is larger than C, all the following nodes are discarded from the search list and the search restarts from the node which has not been evaluated yet.

ML

M-algorithm

$\square \mathrm{M}$-algorithm prioritizes the search in horizontal direction of the tree (breadth first search).

- The M-algorithm evaluates all branches belonging to the surviving nodes in the layer of interest.
- By comparing all path metrics of the evaluated paths, M paths (nodes in the next layer) are selected.
- Then, the search moves to the next layer and the branches leaving from the selected M nodes are evaluated. This process is repeated L stages.

Comparison

Kenichi Higuchi, TUS/ Nov. 16, 2009.

	Sphere detection	M-algorithm (QRM-MLD)
ML detection	Guaranteed	Not guaranteed
Required number of branch evaluations $N_{\text {search }}$	Approximately proportional to L^{3} (not fixed)	Approximately $L M 2^{N_{R}}$
Variation in complexity	Large variation	No variation
Parallel processing	Difficult	Relatively easy

Complexity Reduction in M-algorithm

Kenichi Higuchi, TUS/ Nov. 16, 2009.
\square When we consider the further reduction in the complexity of M -algorithm, there are two approaches.

- Reduction in M value
- Reduction in number of SED calculations per surviving node

ITS-MLM

Kenichi Higuchi, TUS/ Nov. 16, 2009.

- ITS-MLM (iterative tree search with multi-level bit mapping) reduces the number of SED calculations per surviving node by utilizing the multi-level QAM signal structure
- One layer is divided into multiple hierarchical sublayers.
- Selection of surviving nodes sublayer by sublayer

ASESS

Kenichi Higuchi, TUS/ Nov. 16, 2009.
\square ASESS (adaptive selection of surviving symbol candidates) performs selection of surviving node first and calculates SED for the selected node (path)

- Selection of the surviving node is based on the branch ordering within a origin node and the maximum path metric derived from respective origin node

Quadrant Detection for Branch Ordering

(1) First quadrant detection
$\left.\begin{array}{c:c|c:c}x & x & x & x \\ x & x & x & x \\ x & x & x & x\end{array}\right]$
(2) Second quadrant detection

$$
x \times x
$$

Kenichi Higuchi, TUS/ Nov. 16, 2009.
(3) Third quadrant detection

Received signal multiplied by \mathbf{Q}^{H}, z_{m}, after subtraction of surviving symbol replica components

(4) Branch ordering (symbol ranking) based on distance from detected quadrant

LLR Calc. in Complexity Reduced MLD

\square When we assume channel coding and soft-input decoding, LLR should be calculated from the MLD output.
LLR (assuming $\underset{c_{i}=0}{\text { Max-log MAP }} \begin{aligned} & \text { approximation) }\end{aligned} L_{i}=\min _{c_{i}}^{\|}\left\|\mathbf{y}-\mathbf{H s}_{c_{i}=0}\right\|^{2}$
Path metric (full length) $\min _{c_{i}=1} \frac{\left\|\mathbf{y}-\mathbf{H} s_{c_{i}=1}\right\|^{2}}{2}$

\LeftrightarrowWe need the path metric not only of the ML symbol candidate but also of the symbol candidates that represent each of the opposite bits to the ML.

- However, with complexity reduced MLD, some of the path metrics for calculating LLR may not be provided from the MLD output.
- Since the complexity reduced MLD does not evaluate all paths.

LLR Calc. in Complexity Reduced MLD

- Example

Bit \#1, 2, 3, 4
$=1,1,1,1$

0, $\mathbf{0} 0$
$0,0,1,1$
0
e : path metric (accumulated SED)
(Assume $e_{1}<e_{2}<e_{3}<e_{4}$)

< e_{4})

$$
\text { LLR of } 1^{\text {st }} \text { bit }=e_{4}-e_{1}
$$

$$
\text { LLR of } 2^{\text {nd }} \text { bit }=e_{2}-e_{1}
$$

LLR of $4^{\text {th }}$ bit $=e_{1}-e_{3}$
LLR of $3^{\text {rd }}$ bit:
Cannot be calculated since there is no surviving symbol representing third bit = " 1 ".

We need additional estimation for the metrics of the missing bits.

Simple Averaging-based Method

Kenichi Higuchi, TUS/ Nov. 16, 2009.
\square Estimation of the path metric of the missing bits based on the averaging of the MLD output

Performance Example (1)

Kenichi Higuchi, TUS/ Nov. 16, 2009.

- Packet error rate with M-algorithm

Performance Example (2)

Kenichi Higuchi, TUS/ Nov. 16, 2009.

- Comparison of various M-algorithm based detections

- Simulation conditions
$\checkmark \quad 100-\mathrm{MHz}$ bandwidth
\checkmark 0.5-ms frame
$\checkmark L=N_{t x}=N_{r x}=4$
\checkmark Rate-8/9 Turbo code
\checkmark Rms delay spread $=0.26 \mu \mathrm{~s}$

Required $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ for packet error rate of $10^{-2}(\mathrm{~dB})$

Investigation of Peak Frequency Efficiency of $50 \mathrm{Bit} /$ Second $/ \mathrm{Hz}$

Investigation of Ultimate Freq. Efficiency

Kenichi Higuchi, TUS/ Nov. 16, 2009.

- In a multi-cell environment, the achievable peak data rate is determined based on received SINR near cell cite.

Received SINR at 80% CDF is 30 dB when channel load is 10%.
\rightarrow Spectrum efficiency of $50 \mathrm{~b} / \mathrm{s} / \mathrm{Hz}$ is near the upper limit (assuming MLD-based detection)

SINR: Signal-to-interference plus noise power ratio
CDF: Cumulative distribution function

- Research objective

Demonstrate ultimate spectrum efficiency of approximately $50 \mathrm{~b} / \mathrm{s} / \mathrm{Hz}$ (i.e., 5 Gbps using 100 MHz channel bandwidth) based on field experiments

Features of Experimental Configuration

- OFDM radio access with $100-\mathrm{MHz}$ transmission bandwidth
- Efficient modulation and channel coding scheme
- 64QAM data modulation
- Turbo code with coding rate of $R=8 / 9$
- 12-by-12 MIMO multiplexing
- MLD-based signal detection
- QRM-MLD with ASESS
- LLR generation appropriate for QRM-MLD
- Calculation cost for all sub-carriers per frame

MMSE	1.2×10^{9}
Full MLD	5.0×10^{28}
Original QRM-MLD	4.4×10^{10}
QRM-MLD with ASESS	2.5×10^{9}

(NOTE) Calculation cost per operation for real multiplication, real addition, comparison, bit-shift, and table lookup are set to $10,1,1,0$, and 6 , respectively.

Structure of 12-by-12 MIMO Transceiver

Kenichi Higuchi, TUS/ Nov. 16, 2009.

Major Parameters for Field Experiments

Kenichi Higuchi, TUS/ Nov. 16, 2009.

Radio access	OFDM
Carrier frequency	4.635 GHz
Channel bandwidth	101.4 MHz
Sub-frame length	0.5 ms
Number of sub-carriers	$1536(65.919 \mathrm{kHz}$ subcarrier separation $)$
OFDM symbol duration	Effective data $15.170 ~ \mu \mathrm{~s}+\mathrm{CP} 2.067 ~$ $(2048+279 \mathrm{~s}$ samples $)$
Data modulation	64 QAM
Channel coding / decoding	Turbo coding $(R=8 / 9, K=4)$ $/$ Max-Log-MAP decoding
Number of antennas	12 -by-12 MIMO
Information bit rate	4.92 Gbps
OFDM symbol timing detection	Pilot symbol-based symbol timing detection
Channel estimation	Pilot symbol-based two-dimensional MMSE channel estimation
Signal detection	QRM-MLD with ASESS

Subframe Structure

Frequency

1536 sub-

Summary

Kenichi Higuchi, TUS/ Nov. 16, 2009.

- Realization of Peak Frequency Efficiency of $50 \mathrm{~b} / \mathrm{s} / \mathrm{Hz}$ Using OFDM MIMO Multiplexing with MLD Based Signal Detection
- Targeting to achieve the peak rate at the SINR of 30 dB , which corresponds to the 80% outage probability in cellular system assuming 10% channel load
- MIMO configuration is 12 -by-12 antennas with 64QAM data modulation and Rate-8/9 Turbo code
- The use of MLD is essential for achieving $50 \mathrm{~b} / \mathrm{s} / \mathrm{Hz}$ at SINR of 30 dB
- Complexity reduced MLD (QRM-MLD with ASESS) and LLR calculation method for complexity reduced MLD are investigated

