November 16, 2009/ NTT DOCOMO, INC.

Experiments on MIMO Multiplexing with Peak Frequency Efficiency of 50 Bps/Hz Using MLD Based Signal Detection for OFDM High-Speed Packet Access

Hidekazu Taoka Radio Access Network Development Department NTT DOCOMO, INC. 16th November, 2009

DOCOMO's Research Activities for 4G

- Oct. 2002: 100 Mbps in laboratory experiment
- May 2003: 100 Mbps in field experiment
- Aug. 2004: 1 Gbps in laboratory experiment
- May 2005: 1 Gbps in field experiment
- Dec. 2005: 2.5 Gbps in laboratory and field experiments

100 MHz

Dec. 2006: 5 Gbps in laboratory and field experiments

Objective

November 16, 2009/ NTT DOCOMO, INC.

Objective of this presentation • Demonstrate ultimate spectrum efficiency of approximately 50 bit/sec/Hz (i.e., 5 Gbps using 100 MHz channel bandwidth) based on indoor and field experiments

November 16, 2009/ NTT DOCOMO, INC.

Overview of 5Gbps (50 bps/Hz) Experimental Configurations

Features of Experimental Configuration

November 16, 2009/ NTT DOCOMO, INC.

(1) OFDM radio access with 100-MHz transmission bandwidth (2) Efficient modulation and channel coding scheme

- 64QAM modulation
- Turbo code with coding rate of R = 8/9
- Multiple codeword
- (3) 12-by-12 MIMO multiplexing
- (4) MLD-based signal detection
 - QRM-MLD^[1] with ASESS^[2] (adaptive selection surviving symbol replica candidates based on maximum reliability)

LLR (log-likelihood ratio) generation appropriate to QRM-MLD

[1] K. J. Kim, *et al.*, IEEE Trans. on Wireless Commun., vol. 4, no. 2, pp. 710 - 721, March, 2005.

[2] K. Higuchi, et al., in Proc. IEEE Globecom'2004, Nov. 2004.

Overview of 5 Gbps Experiments

November 16, 2009/ NTT DOCOMO, INC.

The MIMO transmitter and receiver comprise of RF transmitter / receiver, D/A(A/D) converter, and Data Storage (Memory and HDD) → Baseband signal processing is done offline (Radio channel performance is basically identical)

Structure of 12-by-12 MIMO Transceiver

Major Radio Parameters for RF Transceiver Part

Carrier frequency	4.635 GHz
Channel bandwidth	101. 4 MHz
Number of antennas	12-by-12 MIMO
Total transmission power	1.2 W (Indoor) / 20 W (Field)
Number of quantized bits at D/A (A/D) converters	14 bits (D/A) / 12 bits (A/D)
Sampling clock rate	270 Msample/sec
Memory per branch	9 GB (Transmitter) / 18 GB (Receiver)
Hard disk capacity	480 GB

Block Diagram of Baseband Signal Processing Part

MS signal processing part

Major Radio Parameters for Baseband Signal Processing Part

Radio access	OFDM
Sub-frame length	0.5 msec
Number of sub-carriers	1536 (65.919 kHz sub-carrier separation)
OFDM symbol duration	Effective data 15.170 μsec + CP 2.067 μsec
Channel coding / decoding	Turbo coding (<i>K</i> = 4) / Max-Log-MAP decoding
Symbol timing detection	Pilot signal-based symbol timing detection
Channel estimation	Two-dimensional MMSE channel estimation
Signal separation	QRM-MLD with ASESS

Subframe Structure

November 16, 2009/ NTT DOCOMO, INC.

Indoor Experiments (Laboratory Room)

Measurement Course in Indoor Experiments

Cumulative Distribution of Fading Correlation (Impact of Receiver Antenna Spacing)

November 16, 2009/ NTT DOCOMO, INC.

- 12-by-12 MIMO Multiplexing
- Total Tx power: 1.2W
- Average speed: 4 km/h

Fading correlation between receiver antennas is increased from 0.26 to 0.42 at 50% CDF when d is reduced from 10 cm to 3.2 cm
 Fading correlation between transmitter antennas is comparable to that between receiver antennas

Throughput Performance (Impact of Receiver Antenna Spacing)

November 16, 2009/ NTT DOCOMO, INC.

Field Experiments (YRP District)

Views of BS Transmitter for 5 Gbps Experiments

November 16, 2009/ NTT DOCOMO, INC.

Installation space of BS transmitter (Rooftop of R&D center)

HDD, PC control

BS transmitter

Views of BS Antennas for 5 Gbps Experiments

November 16, 2009/ NTT DOCOMO, INC.

BS transmitter antennas for 5 Gbps experiments

- 12 branch cross-polarized antennas
- Antenna gain: 19 dBi/antenna
- 3 dB beam width: 90 degrees (horizontal), 5 degrees (azimuth)
- Polarization: linear polarization (vertical/horizontal)
- Antenna space: 30-70 cm (adjustable)
- Antenna height: 26 m

Views of MS Receiver / Antennas for 5 Gbps Experiments

- **♦**MS receiver antenna for 5Gbps experiments
- 12 branch cross-polarized antennas
- Antenna gain: 2 dBi/antenna
- Polarization: linear polarization (vertical/horizontal)
- Antenna space: 10-40 cm (adjustable)
- Antenna height: 3.5 m

Measurement Course in Field Experiments

Time Variation of Measured Throughput

Cumulative Distribution of Fading Correlation (Impact of Transmitter / Receiver Antenna Spacing)

November 16, 2009/ NTT DOCOMO, INC.

- 12-by-12 MIMO multiplexing
- Total Tx power: 20W

antennas

Average speed: 10 km/h

Fading correlation between receiver antennas is increased from 0.25 to 0.35 at 50% CDF when *d* is reduced from 40 cm to 10 cm **Fading correlation between** transmit antennas is increased from 0.36 to 0.51 when D is reduced from 70 cm to 20 cm Fading correlation between transmitter antennas is greater than that between receiver

Cumulative Distribution of Singular Value Ratio (Impact of Transmitter / Receiver Antenna Spacing)

Throughput Performance (Impact of Receiver Antenna Spacing)

per receiver antenna (dB)

November 16, 2009/ NTT DOCOMO, INC.

- 12-by-12 MIMO Multiplexing
- 64QAM, R = 8/9 (Max: 4.915 Gbps)
- Average speed: 10 km/h

 Achieved 4.9 Gbps at received SNR of approximately 28 dB when d is 40 cm.
 Even when d is 10 cm, the loss in the required received SNR is only 0.5 dB.
 Loss in the required average received SINR compared to simulation is approximately 1 dB

Cumulative Distribution of Throughput (Impact of Receiver Antenna Spacing)

Cumulative Distribution of Throughput (Impact of Trasmitter Antenna Spacing)

per receiver antenna (dB)

November 16, 2009/ NTT DOCOMO, INC.

- 12-by-12 MIMO Multiplexing
- 64QAM, R = 8/9 (Max: 4.915 Gbps)
- Average speed: 10 km/h

 Achieved 4.9 Gbps at received SNR of approximately 30 dB when D is 20 cm.

Cumulative Distribution of Throughput (Impact of Transmitter Antenna Spacing)

November 16, 2009/ NTT DOCOMO, INC.

- 12-by-12 MIMO Multiplexing
- Total Tx power: 20W
- 64QAM, R = 8/9
 (Max: 4.915 Gbps)
- Average speed: 10 km/h

Throughput exceeding 4.9 Gbps is achieved at the location probability over 40% even when *D* is 20 cm.

Cumulative Distribution of Throughput (Impact of Vehicular Speed)

November 16, 2009/ NTT DOCOMO, INC.

- 12-by-12 MIMO Multiplexing
- 64QAM, R = 8/9
 (Max: 4.915 Gbps)

 According to the increase in UE speed, throughput performance is degraded.
 Even when v = 40 km/h, 4.9 Gbps throughput is achieved at received SNR of 29.5 dB

Cumulative Distribution of Throughput (Impact of NLOS/LOS)

November 16, 2009/ NTT DOCOMO, INC.

- 12-by-12 MIMO Multiplexing
- 64QAM, R = 8/9 (Max: 4.915 Gbps)

In NLOS condition, the throughput performance is almost identical irrespective of measurement courses
 In LOS condition, the throughput performance is degraded compared to the in NLOS condition

Conclusion

November 16, 2009/ NTT DOCOMO, INC.

Achieved approximately 50 bit/sec/Hz (i.e., 4.9 Gbps data transmission using 100-MHz bandwidth) at the maximum distance of 200 m between BS and MS using MLD-based signal detection.

→ Required average received SNR for achieving 4.9-Gbps throughput is approximately 28.5 dB (D = 70 cm, d = 10 cm), which is near the upper limit taking into account interference from surrounding cells in multi-cell environment