

Antenna De-embedding in **Propagation Simulation using FDTD Method**

D2 Jun-ichi Naganawa

2013/06/27 MCRG Seminar

Based on: IEICE General Conf. (Mar. 2013)

Department of International Development Engineering (IDE) Tokyo Institute of Technology

Background and Purpose

Antenna De-embedding in Propagation simulation

Approach

- > Antenna and Channel Modeling by Spherical Wave
- Technical challenges
 - How to get R, M, T using FDTD method
- Result
 - Numerical examples
- Summary and Future work

Background

Propagation Simulation using FDTD Method

FDTD(Finite-Difference Time-domain) Method

- Antenna and channel is modeled by cells
 - Modeling is flexible
 - Various propagation mechanism is included
 - Reflection, Transmission, Diffraction, etc.
- \succ From E-field, channel response h can be obtained

➢ e.g.

Problem

Antenna is embedded

i.e. The computational domain includes both antennas and channel

Computational Domain

Problem

Antenna is embedded

→Antenna modeling become inaccurate

Channel = large ⇔ Antenna = small

Problem

Antenna is embedded

→Antenna optimization become difficult Simulation should be repeated for different antennas

Department of International Development Engineering (IDE) Tokyo Institute of Technology

Purpose

Antenna De-embedding

Antenna De-embedding should be achieved

Embedded simulation (Conventional Approach)

Approach

Approach: Spherical waves

Spherical wave

It is know that any E-field can be approximated by the finite summation of spherical waves

$$E(r, \theta, \phi) = k \sqrt{\eta} \sum_{j}^{J} b_{j} F_{j}^{(3)} + a_{j} F_{j}^{(4)}(r, \theta, \phi)$$

j ... mode index
J ... the number of mode
b ... incoming wave coefficients

$$b = [b_{1} \ b_{2} \ ... b_{J}]^{T} \in J \times 1$$

a ... outgoing wave coefficients

$$a = [a_{1} \ a_{2} \ ... a_{J}]^{T} \in J \times 1$$

$$F_{j}^{(3)} \ ... \text{ incoming spherical wave function}$$

$$F_{j}^{(4)} \ ... \text{ outgoing spherical wave function}$$

k, η ... Wave number and impedance

Approach: Spherical waves

Spherical wave: e.g.

Antenna Modeling by Spherical Waves

To model antennas in the domain of spherical waves, S, R, T are utilized.

- w ... Received power
- v ... Input power
 - **R** ... Receiving coefficient $\mathbf{R} \in C^{1 \times J}$
 - T ... Transmitting coefficient $T \in C^{J \times 1}$
 - S ... Scattering matrix $S \in C^{J \times J}$

$$w = Ra$$
$$b = Tv + Sa$$

Channel Representation by Spherical Waves

Channel is represented by the relationship between radiated mode b' and incoming mode a:

$\blacksquare Channel response h is given by$

$$\succ h = \frac{w}{v'} = \frac{Ra}{v'} = \frac{RMb'}{v'} = \frac{RMTv'}{v'} = RMT$$

Channel Representation by Spherical Waves

If R,M, T can be obtained by separated simulation, Antenna De-embedding is achieved.

■ How to get *R*, *M*, and *T* using FDTD Method?

Technical challenges

How to get T'

 \blacksquare T' can be obtained by simulation of radiation pattern

 N_s ... The number of samples $E' \in C^{J \times 2N_s} \dots E_{\theta}$ and E_{ϕ} at observation points $F^{(3)} \in C^{J \times N_s} \dots$ Spherical wave for modes and observation points

$$\succ b' = v'T' \rightarrow T' = b'/v'$$

- b' can be obtained by radiation pattern E
- At single point

$$\boldsymbol{E}(\boldsymbol{r}') = k\sqrt{\eta} \sum_{j} b_{j} \boldsymbol{F}_{j}^{(3)}(\boldsymbol{r}')$$

- For all points $E = k\sqrt{\eta} b F^{(3)}$
- Therefore,

$$b = \frac{1}{k\sqrt{\eta}} \left\{ F^{(3)} \right\}^{-1} E$$

How to get **R**

R can be obtained by reciprocal relationship

- $\geq R_j = R_{smn} = (-1)^m T_{s-mn}$
- > n, m, s are indexes
 - $j = 2\{n(n+1) + m 1\} + s$
 - *j* is actually a simplified index.

How to get **M**

$$\mathbf{a} = \mathbf{M}\mathbf{b}' \rightarrow M_{jj'} = \frac{a_j}{b'_{j'}}$$

> *M* can be obtained by simulation without antenna

- > Instead, single mode source and observation points are set
- > *a* can be obtained from E-field around receiving antenna

Numerical Example

Numerical Examples

In order to validate our approach, two numerical examples are performed

- 1. Yagi antennas
- 2. $\lambda/2$ dipole on human body tissue

Yagi-Uda antennas in Freespace

Configuration > 2.45 GHz

Tx

Rx

Simulation setup

Simulation result

Radiation Pattern

Gain: 7.59 dB Input impedance: 70.10 + j86.60 Transfer coefficient T'

R

Simulation setup

Source	2.4 GHz CW Delta-gap feed
Cell size	0.4 cm (0.03λ)
Comp. space	220x220x220 (7.2 $\lambda \times$ 7.2 $\lambda \times$ 7.2 λ) (88 cm × 88 cm × 88 cm)
ABC	10 layers PML
# of iteration	3000
Time step	4 psec
Observation radius	90 cell (2.9λ)
Observation points	800 20 (elevation) x 40(azimuth)
8.0cm 220cell) 7.2λ)	25

Simulation result

Radiation Pattern

Gain: 4.35 dB Input impedance: 107.97 + j44.48

Receiving coefficient R

R

26

Μ

Simulation setup

> Instead of antennas, source and observation points are set.

М

Simulation setup

Source	 Single mode spherical wave Realized by dipole arrays Size of the array: 6x6x6 2.45 GHz CW
Cell size	0.4 cm (1λ)
Computational domain	220x520x220 (7.2 $\lambda \times 17.0\lambda \times 7.2\lambda$) (88.0 cm × 208 cm × 88.0 cm)
# of iterations	5000
Time step	4.0 psec
# of observation points	800 (20 in elevation and 40 in azimuth)
Observation radius	30 cell (12 cm) (1.0 λ)
ABC	10 layers of PML

Department of International Development Engineering (IDE) Tokyo Institute of Technology

Μ

Simulation Result $|M_{jj'}|$ [dB]

29

Result

Pathgain |h|

- Proposed approach ... -29.91 dB
- Embedded simulation (conventional approach) ... -28.98 dB
- Friis transmission formula ... -29.87 dB

Numerical Examples

In order to validate our approach, two numerical examples are performed

- 1. Yagi antennas
- 2. $\lambda/2$ dipole on human body tissue

Department of International Development Engineering (IDE) Tokyo Institute of Technology

$\lambda/2$ dipole on human body tissue

Simulation result

Transmission Coefficient T'

Gain: -3.47 dB (direction to Rx) Input impedance: 58.24 + j37.64

Simulation result

R

34

Μ

Regarding M, same result can be used to the case of Yagi-Uda antenna

Channel is same: free space with distance of 120 cm

Result

Pathgain |h|

- Proposed approach ... -41.67 dB
- Embedded simulation (conventional approach) ... -42.30 dB
- Friis transmission formula ... -43.21 dB

Summary and Future Work

Summary

Background

Antennas and channel are included in the same computational domain of propagation simulation

Purpose

Antenna de-embedding should be achieved: Performing simulation separately for antennas and channel

Approach

Modeling channel and antennas by spherical wave

Result

- > Numerical examples are presented
- Proposed approach is validated by comparison to Friis transmission formula and embedded simulation

Future work

Extension to Body Area Network

- > Validation in the more realistic channel.
- > Including the effect of human body to antenna characteristic

Thank you for your kind attention.

Appendix A. Spherical Wave Theory

Spherical Wave

It is know that any E-field can be expressed by using the summation of spherical waves.

$$\boldsymbol{E}(r,\theta,\phi) = k \sqrt{\eta} \sum_{c=1}^{4} \sum_{n=1}^{N} \sum_{m=1}^{n} \sum_{s=1}^{2} Q_{smn}^{(c)} \boldsymbol{F}_{smn}^{(c)}(r,\theta,\phi)$$

Definition

 F_{smn}^{c*} ... complex conjugate of spherical waves Q_{smn}^{c} ... coefficient k ... wave number

 η ... wave impedance

> In stead of n, m, and s, j can be used.

$$\begin{split} \boldsymbol{E}(r,\theta,\phi) &= k \sqrt{\eta} \sum_{c=1}^{4} \sum_{j=1}^{J} Q_{j}^{(c)} \boldsymbol{F}_{j}^{(c)}(r,\theta,\phi) \\ j &= 2\{n(n+1) + m - 1\} + s \\ J &= 2N(N+2) \end{split}$$

Exact expression

$$\begin{split} F_{1mn}^{(c)}(r,\phi,\theta) &= \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{(n+1)}} \left(-\frac{m}{|m|} \right) \\ & \left\{ z_n^{(c)}(kr) \frac{im\bar{P}_n^{|m|}\cos(\theta)}{\sin(\theta)} e^{im\phi}\hat{\theta} - z_n^{(c)}(kr) \frac{d\bar{P}_n^{|m|}(\cos(\theta))}{d\theta} e^{im\phi}\hat{\phi} \right\} \\ F_{2mn}^{(c)}(r,\phi,\theta) &= \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{n(n+1)}} \left(-\frac{m}{|m|} \right) \\ & \left\{ \frac{n(n+1)}{kr} z_n^c(kr) \bar{P}_n^{|m|}\cos(\theta) e^{im\phi}\hat{r} \right. \\ & \left. + \frac{1}{krd(kr)} \left\{ z_n^c(kr) \right\} \frac{d\bar{P}_n^{|m|}(\cos(\theta))}{d\theta} \hat{\theta} \\ & \left. + \frac{1}{krd(kr)} \left\{ z_n^c(kr) \right\} \frac{d\bar{P}_n^{|m|}\cos(\theta)}{\sin(\theta)} \hat{\phi} \right\} \\ \end{split}$$

Exact expression

Choice of *c* depends on the type of wave:

Standing wave

•
$$c = 1,2$$
 is sufficient

$$E(r,\theta,\phi) = k\sqrt{\eta} \sum_{j=1}^{J} Q_{smn}^{(1)} F_{smn}^{(1)}(r,\theta,\phi) + Q_{smn}^{(2)} F_{smn}^{(2)}(r,\theta,\phi)$$

Traveling wave

•
$$c = 3,4$$
 is sufficient
 $c = 4$... incoming wave
 $c = 3$... outwarding wave
 $E(r, \theta, \phi) = k \sqrt{\eta} \sum_{j=1}^{J} Q_{smn}^{(3)} F_{smn}^{(3)}(r, \theta, \phi) + Q_{smn}^{(4)} F_{smn}^{(4)}(r, \theta, \phi)$

Appendix B. Expansion at Rx

4. Obtaining incoming wave a from observed E-field E

 \succ Without receiving antenna a = b

How to obtain receiving mode

Spherical Wave Expansion

Appendix C. Excitation of spherical wave

■ FDTDグリッド上に構成された微小ダイポールアレイの励振電 流を制御して所望のモードを生成

▶ 微小ダイポールはFDTD上で点電流源として実現される

■ 励振電流の決定方法は点整合法

Department of International Development Engineering (IDE) Tokyo Institute of Technology

- 球面状に整合点をとる
 整合点でダイポールアレイと球波動関数の電界成分が一致
 $E_c w = k_0 \sqrt{\eta} \sum_{i=0}^{\infty} Q_i F_i$
 - *E_c*...単位電流を持つダイポールアレイが
 整合点に作る電界
 - w... 励振電流
 - F_j...モードjの球波動関数
 - *Q_j...*モードjの係数
 - 単一のモードの生成が目的であるため
 Q_j = { √2p (j = j')
 0 (otherwise)
 j'... 励振対象のモード番号
 p... 電力
- 励振電流の取得
- *w* = *E*_c⁻¹*E*_t
 一般逆行列 *E*_c⁻¹

励振例

■ パラメータ

周波数	2.4GHz
FDTDセルサイズ	1/25λ (5mm)
ダイポールアレイのサイズ	各方向 10 cells (5cm)
観測半径	3.6λ
整合点および観測点	θ方向の分割数 20 φ方向の分割数 40
ダイポール数	1200
時間ステップ	5psec
ステップ数	3000

ダイポールアレイ

励振例

■ 誤差の評価

▶ 励振された電界を展開し、最大の不要モードの大きさを評価

評価

- j'=1 ... 48 のモードに対して同様の評価を実行
 - ▶ 励振 → 展開 → 最大の不要モードの大きさを評価
 - ▶ BAN用の小型アンテナのモデル化には十分と想定

■ 全てのモードで-25dB以下を達成

Appendix D.

J = 48
Spherical 42.275150
Embed 42.297497
Friis 43.219244

