Investigation of antenna diversity effect on BAN coordinator

Sho Kobayashi Minseok Kim Jun-ichi Takada

Takada Laboratory

2013.11.14

MCRG seminar
Background

➤ Body Area Network (BAN)
 ● Communication between nodes located in, on or around the human body
 ● Expected to find wide applications especially in medical/healthcare

➤ IEEE 802.15.6
 ● Standards for BAN
 ● UWB
 ◆ Wideband system specification
 ◆ Low power consumption
 ◆ Long-term use by battery
 ◆ RAKE reception utilizing high time resolution
Background

➢ Vital data sensor and coordinator node

 ● Sensor node
 ◆ Collecting vital data

 ● Coordinator node
 ◆ Collecting vital data from sensor node
 ◆ Degree of freedom in power consumption and volume for implementation

➢ Tasks

 ● Continuous collection of vital data
 ◆ Prevention of disruption of communication by shadowing of human body
 – Consideration of channel propagation affected by the body posture and movement
 ◆ Construction of high reliable system
 – RAKE reception
 – Antenna diversity using multiple antennas
 – Regulation in power and volume
Objective

- Consider RAKE reception and antenna diversity for performance improvement
 - Consider RAKE reception utilizing specification of UWB
 - Consider antenna diversity using multiple antennas at coordinator node
 - Sensor node is regulated in power and its volume
 - Utilize degree of freedom of coordinator node
 - Assume the attaching position on the waist belt
 - Easy to communicate with all the sensors in IEEE standard
 - Located at center of the body
 - Low sense of discomfort for attachment
 - Possible to be used for monitoring in daily life

Investigate the effect of RAKE reception and antenna diversity
Use outage probability as evaluation criteria

- This research calculated analytical probability in the following situations

<table>
<thead>
<tr>
<th>RAKE reception</th>
<th>Antenna diversity</th>
<th>Without</th>
<th>With</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without</td>
<td>①</td>
<td>③</td>
<td></td>
</tr>
<tr>
<td>With</td>
<td>②</td>
<td>④</td>
<td></td>
</tr>
</tbody>
</table>
Measurement System

Transmitter
- Pulse generator (PG)
- Band Pass Filter (BPF)
 - Frequency band: 3.0-4.8 GHz
- High Power Amplifier (HPA)

Receiver
- Low Noise Amplifier (LNA)
 - Gain: 40 dB
- Band Pass Filter (BPF)
 - Frequency band: 3.0-4.8 GHz
- Digital storage Oscilloscope (DSO)
 - Sampling rate: 25 G samples/sec
 - 4 Ports

Low band UWB (3.4～4.8GHz) is used as frequency band
The data acquisition timing at the receiver was synchronized with the pulse repetition at transmitter by using common clock source
Measurement Setup

➢ Antenna position
 - Transmission: wrist, chest, thigh, ankle
 - Reception (4 antennas): on the waist belt

➢ Antenna
 - Skycross SMT-3TO10M-A (Omnidirectional antenna)
 - Attached 1cm away from body surface by polystyrene foam
Measurement Setup

- **Posture**
 - Walk
 - Standing up and sitting down

- **Subject (2 persons)**
 - 165 cm, 68 kg
 - 180 cm, 65 kg

- Use the data including 2 persons and 2 postures statistically

- **Place: Experiment room in Tokyo Tech**
 - Regarded as office environment
 - Size: 5.5 m × 6.5 m
 - Ceiling height: 2.7 m ~ 3.3 m

Floor plan of the experiment room
System Evaluation

- Use outage probability as evaluation criteria
 - Outage probability can be obtained by path gain from experiment
 - Assume DBPSK as modulation scheme

Parameters in calculation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>499.2 MHz</td>
</tr>
<tr>
<td>Modulation scheme</td>
<td>DBPSK (Synchronous detection)</td>
</tr>
<tr>
<td>Packet size (N_b)</td>
<td>250 Bytes</td>
</tr>
<tr>
<td>Noise figure (NF)</td>
<td>12 dB</td>
</tr>
<tr>
<td>Implementation loss (Loss)</td>
<td>8 dB</td>
</tr>
<tr>
<td>Bit rate (BR)</td>
<td>487 kbps</td>
</tr>
</tbody>
</table>
Calculation Method

1. BER P_b

 \[P_b = \text{erfc}(\sqrt{\gamma_b}) \]

 - SNR per bit: γ_b
 \[\gamma_b = \frac{E_b}{N_0} = \frac{P_r}{BR} \cdot \frac{1}{N_0} \]

 - Receive power: P_r
 \[P_{rdB} = P_{tdB} - NF - Loss + PG_{dB} \]

 - Noise power spectrum density: N_0
 \[N_0 = k \cdot T \]

 γ_b: SNR per bit
 E_b: energy per bit
 N_0: noise power spectrum density
 BR: bit rate
 P_t: transmit power
 NF: noise figure
 Loss: implementation loss
 PG: path gain
 k: Boltzmann's constant ($1.38 \times 10^{-23}[\text{J/K}]$)
 T: temperature (25℃, 298K)

2. PER P_p

 \[P_p = 1 - (1 - P_b)^{N_b} \]

 N_b: Packet size

3. Outage probability P_{out}

 \[P_{out} = \text{prob}(\Gamma_p < P_p) \]

 Γ_p: threshold ($5\% = 0.05$)
Calculation Method of Path Gain

- Calculate path gain from impulse response measured in experiment

1. Peak detection
 - Obtain the peak of impulse response
 \[PG_{\text{peak}} = -10 \log_{10}(\max(|h(\tau)|^2)) \]
 \[h(\cdot) : \text{impulse response} \]
 \[\tau \text{ : delay time} \]

2. Only use RAKE reception
 - Sum all multipath components (All-RAKE reception)
 - Sum each data which are above the threshold
 - Threshold: -83.5 dB => Noise floor

\[PG_{\text{RAKE}} = -10 \log_{10}(\sum_\tau |h(\tau)|^2) \]
\[(h(\tau) \geq \alpha) \]
\[h(\cdot) : \text{impulse response} \]
\[\tau \text{ : delay time} \]
\[\alpha \text{ : threshold} \]
Calculation Method of Path Gain

③ Only use antenna diversity
- Sum peak value at each antenna

\[
PG_{\text{Div}} = -10 \log_{10} \left(\sum_i \max(|h_i(\tau)|^2) \right)
\]

- \(h_i(\cdot)\): impulse response at each antenna
- \(\tau\): delay time
- \(\alpha\): threshold
- \(i\): the number of antenna

④ Use both RAKE reception and antenna diversity
- Sum result of RAKE combining at each antenna

\[
PG_{\text{RAKE-Div}} = -10 \log_{10} \left(\sum_i \sum_{\tau} |h_i(\tau)|^2 \right)
\]

- \(h_i(\cdot)\): impulse response at each antenna
- \(\tau\): delay time
- \(\alpha\): threshold
- \(i\): the number of antenna
Assume maximum EIRP of UWB (500 MHz : -14.1dBm)

- For all transmit antenna positions, some antennas achieve less than 10% probability
- Right-Front antenna (R-F) achieve less than 10% outage probability for all transmit antenna positions
Front side antenna (R-F, L-F) : less than 1% probability for all transmit antenna

Left-Back antenna (L-B) : wrist and thigh cannot achieve 10% outage

Right-Back antenna (R-B) : chest also cannot achieve 10% outage

- Back side antennas are more affected by shadowing of human body
Only RAKE Reception

- Front side antenna (R-F, L-F): less than 1% probability for all transmit antenna
- Left-Back antenna (L-B): wrist and thigh cannot achieve 10% outage
- Right-Back antenna (R-B): chest also cannot achieve 10% outage
 - Back side antennas are more affected by shadowing of human body
Only Antenna Diversity

- **2 antennas case**
 - Many pairs achieve less than 1% outage probability
 - The pair between back side (R-B, L-B) show little improvement
• 2 antennas case

 ❖ Many pairs achieve less than 1% outage probability

 ❖ The pair between back side (R-B, L-B) show little improvement
3 or 4 antennas case

- More improvement compared by 2 antennas
- All pairs can achieve less than 1% outage probability
• 3 or 4 antennas case
 ◆ More improvement compared by 2 antennas
 ◆ All pairs can achieve less than 1% outage probability
• 2 antennas case
 • Pair of back side antennas (R-B, L-B) has low performance improvement
 – Able to achieve less than 10%
 • Other combination can achieve less than 1%
Both scheme

- 2 antennas case
 - Pair of back side antennas (R-B, L-B) has low performance improvement
 - Able to achieve less than 10%
 - Other combination can achieve less than 1%
Comparison between RAKE reception and antenna diversity (2 antennas)

- Compare the result at **10 dB less** than maximum EIRP of UWB (**-24.1 dBm**)
- Wrist, chest, ankle: RAKE reception has higher performance improvement than antenna diversity
- Thigh: RAKE reception and antenna diversity have same performance improvement
Comparison between RAKE reception and antenna diversity (2 antennas)

- Compare the result at **10 dB less** than maximum EIRP of UWB (**-24.1dBm**)
- Wrist, chest, ankle: RAKE reception has higher performance improvement than antenna diversity
- Thigh: RAKE reception and antenna diversity have same performance improvement
Comparison between RAKE reception and antenna diversity (3 antennas)

- Compare the result at **10 dB less** than maximum EIRP of UWB (**-24.1 dBm**)
- Wrist, chest: RAKE reception has higher performance improvement than antenna diversity
- Thigh, ankle: antenna diversity has higher performance improvement than RAKE reception
Comparison between RAKE reception and antenna diversity (3 antennas)

- Compare the result at **10 dB less** than maximum EIRP of UWB (**-24.1dBm**)
- Wrist, chest: RAKE reception has higher performance improvement than antenna diversity
- Thigh, ankle: antenna diversity has higher performance improvement than RAKE reception
Summary and Future Works

➢ Summary

- Evaluated the effect of **RAKE reception** and **antenna diversity** at coordinator node

<table>
<thead>
<tr>
<th>RAKE reception</th>
<th>Antenna diversity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Not use</td>
<td>Not use</td>
<td>Use</td>
</tr>
<tr>
<td></td>
<td>• Only Right-Front antenna (R-F) can achieve less than 10% outage probability for all transmit antenna</td>
<td>• 2 antennas: achieve less than 1% except the pair of back side</td>
</tr>
<tr>
<td></td>
<td>Use</td>
<td>More than 3 antennas: all pair can achieve less than 1%</td>
</tr>
<tr>
<td></td>
<td>• Front side antenna (R-F, L-F) achieve less than 1% probability</td>
<td>• In the case of 2 antennas, Pair of back side antennas (R-B, L-B) can also achieve less than 10% probability</td>
</tr>
<tr>
<td></td>
<td>• Back side antenna (R-B, L-B) cannot achieve less than 10% for all</td>
<td></td>
</tr>
</tbody>
</table>

- Comparison between RAKE reception and antenna diversity
 - wrist, chest: **RAKE reception** > **antenna diversity**
 - thigh, ankle: **RAKE reception** < **antenna diversity** (more than 3 antennas)

➢ Future works

- Expand to other situations
Thank you for listening!