Power allocation for Block Diagonalization Multi-user MIMO downlink with fair user scheduling and unequal average SNR users

Therdkiat A. (Kiak) Araki-Sakaguchi Laboratory MCRG group seminar 12 July 2012

0

AGENDA

- Background
- System model
 - Block Diagonalization(BD)
- Proportional fair User scheduling
- Power allocation
 - Equal power allocation
 - Water filling
 - Proposed scheme
- Simulation results
- Conclusion and future work

Background

- MIMO system
 - Improve throughput and spectral efficiency
 - Capacity of the system increases with the number of transmit and receive antennas
- Multi-user MIMO system
 - Serving multiple MIMO users by using the benefit of spatial multiplexing instead of TDMA, FDMA or CDMA

Problems: the number of supportable users is usually less than the number of active users due to the limitation of the transmit antennas

Solution: user scheduling is needed to select a group of users from all active users

System model

• Multiuser MIMO system

$$\mathbf{r}_k = \mathbf{H}_k \sum_{j=1}^K \mathbf{W}_j \mathbf{s}_j + \mathbf{n}_k$$

- Each user has the same number of antenna
- If N_t < KN_r, the user scheduling is needed

random variables, and users are assumed to have different average SNR

System model

The received signal of the *k*th user with postcoding matrix \mathbf{D}_k is applied, then

$$y_{k} = \mathbf{D}_{k} \mathbf{r}_{k} = \mathbf{D}_{k} \mathbf{H}_{k} \sum_{j=1}^{\hat{K}} \mathbf{W}_{j} s_{j} + \mathbf{D}_{k} \mathbf{n}_{k}$$

$$= \mathbf{D}_{k} \mathbf{H}_{k} \mathbf{W}_{k} s_{k} + \mathbf{D}_{k} \mathbf{n}_{k} + \mathbf{D}_{k} \mathbf{H}_{k} \sum_{j \neq k}^{\hat{K}} \mathbf{W}_{j} s_{j}$$

Inter-user
interference
We need $\mathbf{H}_{k} \mathbf{W}_{j} = \mathbf{0}$, $k \neq j$

 $\mathbf{y}_{\mathbf{k}} = \mathbf{D}_{\mathbf{k}}\mathbf{r}_{\mathbf{k}} = \mathbf{D}_{\mathbf{k}}\mathbf{H}_{\mathbf{k}}\mathbf{W}_{\mathbf{k}}s_{\mathbf{k}} + \mathbf{D}_{\mathbf{k}}\mathbf{n}_{\mathbf{k}}$

Block Diagonalization (BD)

- Introduced to cancel inter-user-interference (IUI) by designing precoding matrices
- For the *k*th user, define

$$\widetilde{\mathbf{H}}_{k} = \begin{bmatrix} \mathbf{H}_{1}^{T} & \cdots & \mathbf{H}_{k-1}^{T} & \mathbf{H}_{k+1}^{T} & \cdots & \mathbf{H}_{K}^{T_{k}} \end{bmatrix}^{T}$$

then determine the singular value decomposition (SVD) of the matrix $\widetilde{\mathbf{H}}_{k} = \widetilde{\mathbf{U}}_{k} \begin{bmatrix} \widetilde{\boldsymbol{\Sigma}}_{k} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{V}}_{k,1} & \widetilde{\mathbf{V}}_{k,0} \end{bmatrix}^{H}$

Precoding matrix is columns of $\tilde{\mathbf{V}}_{k,0}$

Noninterfering single user MIMO effective channel becomes

$$\mathbf{H}_{k,e} = \mathbf{H}_k \widetilde{\mathbf{V}}_{k,0}$$

Block Diagonalization (BD)

- The situation becomes single MIMO capacity maximization problem, (find postcoding and another precoding matrix)
- The postcoding matrix is determined by applying SVD to the effective channel $\mathbf{H}_{k,e}$

$$\mathbf{H}_{k,e} = \mathbf{U}_{k,e} \begin{bmatrix} \mathbf{\Sigma}_{k,e} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{V}_{k,1e} & \mathbf{V}_{k,0e} \end{bmatrix}^{H}$$

- Postcoding matrix is columns of $U_{k,e}$
- Precoding matrix for effective channel is columns of V_{k,1e}

Block Diagonalization (BD)

• Summary of BD

From

$$\mathbf{y}_{k} = \mathbf{D}_{k}\mathbf{r}_{k} = \mathbf{D}_{k}\mathbf{H}_{k}\sum_{j=1}^{K}\mathbf{W}_{j}\mathbf{s}_{j} + \mathbf{D}_{k}\mathbf{n}_{k}$$
$$= \mathbf{D}_{k}\mathbf{H}_{k}\mathbf{W}_{k}\mathbf{s}_{k} + \mathbf{D}_{k}\mathbf{n}_{k}$$

where
$$\mathbf{W}_k = \widetilde{\mathbf{V}}_{k,0} \mathbf{V}_{k,1e}$$
 and $\mathbf{D}_k = \mathbf{U}_{k,e}^H$.

• Finally, the sum rate capacity of the BD MIMO system becomes

$$C_{BD} = \max_{\Lambda_k, \sum_{k=1}^{K} tr(\Lambda_k) = P_t} \sum_{k=1}^{\hat{K}} \log_2 \left| \mathbf{I} + \frac{1}{\sigma_{n,k}^2} \Sigma_{k,e}^2 \Lambda_k \right|$$

Proportional Fair User scheduling

- If $N_t < KN_r$, the base station has to select \widehat{K} out of K users where $\widehat{K} = \left\lfloor \frac{N_t}{N_r} \right\rfloor$
- In conventional work, the user scheduling is based on $\|\mathbf{H}_k\|^2$ (channel quality)
- With proportional fair strategy and unequal SNR users case, the scheduling is then modified to consider ||H_k||², SNR of each user and the fairness among users

Proportional Fair User scheduling

(1) Initialization $(i\,=\,1),$ let $\mathcal{U}=\,\{1,\,\,2,\,\,...,\,\,K\}$ and $\mathcal{U}_{\rm s}=\phi$

a. Select the first user u_1 such that

$$u_{1} = \arg \max_{k \in \mathcal{U}} \mu_{k}(t) \log_{2}(1 + \rho_{k} \|\mathbf{H}_{k}\|^{2})$$

b. Set $\mathcal{U}_{s} = \mathcal{U}_{s} \cup \{u_{1}\}$ and $\mathcal{U} = \mathcal{U} \setminus \{u_{1}\}$
(2) For $i = 1$ to \widehat{K}

a. Find the projection matrix $\mathcal{P}_{i}^{\perp} = \mathbf{I}_{N_{t}} - \mathbf{V}_{i-1}^{H}\mathbf{V}_{i-1}$ where \mathbf{V}_{i-1} is the row basis of $\mathbf{H}(\mathcal{U}_{s})$ and $\mathbf{H}(\mathcal{U}_{s}) = \begin{bmatrix} \mathbf{H}_{u_{1}}^{T} & \mathbf{H}_{u_{2}}^{T} & \cdots & \mathbf{H}_{u_{i-1}}^{T} \end{bmatrix}^{T}$ b. Find the set of users

 $\mathcal{U}_{i} = \{k \in \mathcal{U}_{i-1} | (\left\| \mathbf{H}_{k} \mathbf{V}_{i-1}^{H} \right\| / \left\| \mathbf{H}_{k} \right\| \left\| \mathbf{V}_{i-1} \right\|) < \varepsilon \}$

c. If $\mathcal{U}_i = \phi$, terminate the algorithm and \mathcal{U}_s is the selected user set

d. Select a user such that $u_i = \arg \max_{k \in \mathcal{U}_i} \mu_k(t) \log_2(1 + \rho_k(\|\mathbf{H}_k \mathcal{P}_i^{\perp}\|^2 + \|\mathbf{H}(U_s) \mathcal{P}_k^{\perp}\|^2))$ e. Set $\mathcal{U}_s = \mathcal{U}_s \cup \{u_1\}$ and $\mathcal{U} = \mathcal{U} \setminus \{u_1\}$ (3) End: The selected user set is \mathcal{U}_s

• The first user is selected such that

 $u_1 = \operatorname{argmax}_{k \in U} \mu_k(t) \log_2(1 + \rho_k ||H_k||^2)$

where ρ_k is the SNR and $\mu_k(t)$ is the proportional fairness of the *k*th user

• Proportional fairness factor

$$\mu_k(t) = \frac{1}{\overline{R_k}(t)} \quad \text{and}$$
$$\overline{R_k}(t+1) = \begin{cases} \delta \overline{R_k}(t) + (1-\delta)R_k(t), & k \in \mathcal{U}_s \\ \delta \overline{R_k}(t), & k \notin \mathcal{U}_s \end{cases}$$

 $\delta = \frac{1}{T_c}$ is the forgetting factor which average the rate of users over T_c timeslots.

TOKYO TIECH Pursuing Excellence

• Candidate users

Set of candidate user can be found by determining correlation coefficient

$$\frac{\|\mathbf{H}_{k}\mathbf{V}_{i-1}^{H}\|}{\|\mathbf{H}_{k}\|\|\mathbf{V}_{i-1}\|} < \varepsilon$$

where \mathbf{V}_{i-1} is the row basis of $\mathbf{H}(U_s)$ and

$$\mathbf{H}(U_s) = \begin{bmatrix} \mathbf{H}_{u_1}^T & \mathbf{H}_{u_2}^T & \cdots & \mathbf{H}_{u_{i-1}}^T \end{bmatrix}^T$$

(aggregate channel of selected users)

• Other users are selected such that

$$u_{i} = \operatorname{argmax}_{k \in U_{i}} \mu_{k}(t) \log_{2}(1 + \rho_{k}(\left\|\mathbf{H}_{k}\mathcal{P}_{i}^{\perp}\right\|^{2} + \left\|\mathbf{H}(U_{s})\mathcal{P}_{k}^{\perp}\right\|^{2}))$$

Backward Projection Forward Projection

where projection matrix $\mathcal{P}_i^{\perp} = \mathbf{I}_{N_t} - \mathbf{V}_{i-1}^H \mathbf{V}_{i-1}$

and projection matrix $\mathcal{P}_{k}^{\perp} = \mathbf{I}_{N_{t}} - \widehat{\mathbf{V}}_{k}^{H} \widehat{\mathbf{V}}_{k}$, $(\widehat{\mathbf{V}}_{k} \text{ is the row basis of } \mathbf{H}_{k})$

- An important key to increase the sum capacity of the system
- Firstly, denote the power matrix as

$$\mathbf{\Lambda}_k = \begin{bmatrix} P_1^k & 0 \\ & \ddots & \\ 0 & P_{N_{\mathbf{r}}}^k \end{bmatrix}$$

• The power is allocated within the condition

$$\sum_{k=1}^{\widehat{K}} tr(\mathbf{\Lambda}_k) = P_{\mathrm{t}}$$

- Equal power allocation (EP)
 - Simple method to allocate power to users
 - The transmission power of each stream of the *k*th user can be determined by

$$P_i^k = \frac{P_{\rm t}}{\widehat{K}N_{\rm r}}$$

- Water filling (WF)
 - Well-known optimal scheme in many systems
 - Allocate power based on SNR and channel gain of all subchannels of all users.
 - The transmission power of each stream of the *k*th user can be determined by

$$P_i^k = \begin{cases} L - \frac{\sigma_{n,k}^2}{\lambda_i^k}, & L \ge \frac{\sigma_{n,k}^2}{\lambda_i^k} \\ 0, & L < \frac{\sigma_{n,k}^2}{\lambda_i^k} \end{cases},$$

$$\sum_{k=1}^{\widehat{K}} \sum_{i=1}^{N_r} P_i^k = P_t$$

• where λ_i^k is the *i*th diagonal element of $\Sigma_{k,e}^2$

- Problem
 - With PF scheduler, some low-channel gain selected users don't have power due to WF strategy
 - This problem also occurs in equal SNR users case but not as large as in unequal SNR users case

- Proposed power allocation
 - WF has a problem in MU-MIMO system with proportional fairness scheduling
 - Combining concepts of EP and WF, the power is firstly divided equally then WF is applied over subchannels of each user individually.

• Parameters setting

Parameters	Value
SNR	Ranged from 0-20 dB
No. of users	10, 15, 20, 30, 40, 60, 80
No. of transmit antenna, N _t	12
No. of receive antenna, N _r	2
Channel model	i.i.d Rayleigh channel
Total power transmission	1
Width of sliding window, T _c	100 time slots
Correlation coefficient threshold, ε	1

|+|*TOKYO*

Fig. 2 Average sum rate capacities of PF scheduling systems.

- As the number of users increases, the combining power allocation gives the best sum rate capacity.
- The equal power allocation performs even better than WF.

|*|*TDK*

Fig. 3 Average rate of each user.

• For the system with fixed 20 users, the first 14 users are discarded with Max rate scheduler.

• PF scheduler provide fairness among users, the combining power allocation method gives the best result.

Fig. 4 Average latency time of each user.

- WF scheduler selects the low SNR users 'too' frequent
- Combining method provides better latency time and fairness among users

|+|*TDK*

Conclusion and Future work

- Conclusion
 - Although the Water filling is effective in MU-MIMO system without scheduler or in the equal SNR users system. Water filling power allocation does not work well in the PF scheduling for MU-MIMO system. The proposed scheme combines the method of EQ and WF, thus increase the sum capacity of the system and average rate of each user.
- Future work
 - Consider the system with unequal number of receive antennas of users
 - Consider the system with Quality of Service (QoS)
 - Study the feedback scheme for CSI

...Thank you for your attention...