MIMO-OFDM Precoder for Minimizing BER Upper Bound of MLD under Imperfect CSI

MCRG Joint Seminar, June the 12th, 2008 (Previously presented at ICC 2008, Beijing on May the 21st, 2008)

Boonsarn Pitakdumrongkija, Kazuhiko Fukawa, and Hiroshi Suzuki Suzuki-Fukawa Laboratory

Presentation Outline

- Introduction
 - Research background
- Literature Review
 - Precoder for minimizing BER upper bound under perfect CSI
 - Problem identification under imperfect CSI and research objective
- Proposed Precoding Method under Imperfect CSI
 - Criterion formulation and optimization
 - Computer simulation results
- Conclusions
 - Summary and suggestions for future work

Research Background

- Demands for future mobile communications (High Speed + High Reliability)
- Framework: MIMO-OFDM system with feedback channel

- Linear precoding criteria
 - Maximum Capacity
 - Adaptive Modulation Coding (AMC)
 - Waterfilling-based power allocation
 - » Non-Capacity Based
 - Fixed modulation and coding
 - Phase and power optimization:
 - Satisfy QoS
 - Minimize transmit power
 - Minimize bit error rate (MBER)

Increase reliability (BER performance): Focus of this research 3

Detection Error and MBER Precoding

• Detection error: Received signal closer to another signal than transmitted one

• MBER precoding: Minimize detection error \rightarrow Increase reliability

MBER Precoder under Perfect CSI

With MBER precoder

- Transmitter and receiver: Same CSI
- Procedures at transmitter

No precoder

Significant BER improvement over spatial multiplexing (nonprecoded) system¹

¹ B. Pitakdumrongkija, K. Fukawa, H. Suzuki, and T. Hagiwara, "Linear precoding with minimum BER criterion for MIMO-OFDM systems employing ML detection," IEEE ICC 2007, pp. 2522-2527, June 2007. 5

Uncoded BER under Perfect CSI

6

System Model under Imperfect CSI

• CSI model

- Receiver: Channel Estimation Error
- Transmitter: Channel Estimation Error + Quantization Error
- Transmitter and receiver: Different CSI

Problem and Proposed Solution

 Problem with conventional MBFR Proposed solution precoder (designed by assuming New BER cost function: perfect CSI) Robust to imperfect CSI Conventional cost function CSI error New cost function $J_{e}(F)$ CSI error $J_{e}'(F)$ **ER** Bound Large Degradation **Small** m Degradation 0 (F_{o}) Precoding Matrix Conventional Calculated New Calculated optimal optimal value value CSI error \rightarrow Small degradation CSI error \rightarrow Large degradation

Presentation Outline

- Introduction
 - Research background
- Literature Review
 - Precoder for minimizing BER upper bound under perfect CSI
 - Problem identification under imperfect CSI and research objective
- Proposed Precoding Method under Imperfect CSI
 - Criterion formulation and optimization
 - Computer simulation results
- Conclusions
 - Summary and suggestions for future work

MIMO-OFDM Transmitter

 \bullet System with N_T transmit and N_R receive antennas

MIMO-OFDM Receiver

CSI Error Model

- CSI at receiver: $\widetilde{h}_{lk,d} = h_{lk,d} + \overline{\psi}_{lk,d}$ Estimation error
- CSI at transmitter: $\hat{h}_{lk,d} = h_{lk,d} + \psi_{lk,d} + \upsilon_{lk,d}$ Quantization error
- MMSE channel estimation

• Uniform quantization

- Estimation error statistics:

$$\langle \mathbf{\psi}_l \rangle = \mathbf{0}$$

 $\langle \mathbf{\psi}_l \mathbf{\psi}_l^H \rangle \approx \sigma_n^2 \mathbf{I}$

- Quantization error statistics:

$$\left\langle \upsilon_{lk,d} \right\rangle = 0$$

$$\left\langle \upsilon_{l_{1}k_{1},d_{1}}^{*} \upsilon_{l_{2}k_{2},d_{2}} \right\rangle = \sigma_{\upsilon}^{2} \delta_{l_{1}l_{2}} \delta_{k_{1}k_{2}} \delta_{d_{1}d_{2}}$$

$$\sigma_{\upsilon}^{2}/2 = S_{\upsilon}^{2}/12$$

- If $\operatorname{Re}\{h_{lk,d}\} \in [-1,1]$, then $B = \log_2(2/S_v)$ No. of quantizing bit per path

Pairwise Error Probability (PEP)

• Detection error condition when σ_{υ}^2 is small $(\hat{\mathbf{H}}_{(n)})_{lk} = H_{lk}(n) + \Psi_{lk}(n) \leftrightarrow h_{lk,d} + \psi_{lk,d} + \upsilon_{lk,d}$

$$\left\| \mathbf{y}(n,i) - \hat{\mathbf{H}}(n)\mathbf{F}(n)\mathbf{b}(n,i) \right\|^{2} > \left\| \mathbf{y}(n,i) - \hat{\mathbf{H}}(n)\mathbf{F}(n)\mathbf{c}(n,i) \right\|^{2}$$

$$C \longrightarrow \varepsilon = B - C$$

• PEP averaged with respect to CSI errors

$$P(\tilde{b} \to \tilde{c} | \hat{H}) = \int_{0}^{\infty} p(\varepsilon) d\varepsilon = \frac{1}{2} \operatorname{erfc} \sqrt{\gamma(\tilde{b} \to \tilde{c})}$$

Joint p.d.f. between
AWGN and CSI errors
$$\gamma(\tilde{b} \to \tilde{c}) = \left\| \hat{H}(n) \mathbf{F}(n) [\mathbf{b}(n,i) - \mathbf{c}(n,i)] \right\|^{2} / 4\sigma_{e}^{2}(\mathbf{F}(n))$$

Error variance: $\sigma_{e}^{2}(\mathbf{F}(n)) = \frac{|N^{-1}\sigma_{n}^{2}|}{|N^{-1}\sigma_{n}^{2}|} + \frac{|\mathbf{F}(n)\mathbf{b}(n,i)|^{H}}{|\mathbf{A}(n)[\mathbf{F}(n)\mathbf{b}(n,i)]|}$
Conventional Proposed additional term
CSI errors: $\mathbf{A}(n) = \frac{\langle \mathbf{\Psi}^{H}(n)\mathbf{\Psi}(n) \rangle}{|\mathbf{E}stimation error}} + \frac{\langle \mathbf{Y}^{H}(n)\mathbf{Y}(n) \rangle}{|\mathbf{Q}uantization error}|$ 13

BER Upper Bound Minimization

• BER upper bound cost function

$$J_{e}(\mathbf{F}(n)) = \sum_{\tilde{b}} \sum_{\tilde{b} \neq \tilde{c}} N_{e}(\tilde{b} \rightarrow \tilde{c}) P(\tilde{b} \rightarrow \tilde{c} \mid \hat{H})$$

All pairs of when $\mathbf{c}(n,i)$ rather
 $\mathbf{b}(n,i)$ and $\mathbf{c}(n,i)$ than $\mathbf{b}(n,i)$ is detected

• Solution for optimal precoding matrix

$$\mathbf{F}_{o}(n) = \arg\min_{\mathbf{\tilde{F}}(n)} J_{e}(\mathbf{\tilde{F}}(n)) \xrightarrow{\text{Mathematically}} Untraceable}$$

Optimization by the steepest descent algorithm

$$\mathbf{F}_{n=0}^{(q)}(n) = \mathbf{F}^{(q-1)}(n) - \mu \frac{\partial J_{e}(\mathbf{F}(n))}{\partial \mathbf{F}^{*}(n)}|_{\mathbf{F}^{(q-1)}(n)}$$

Iteration Real positive Gradient of index constant $\mathbf{J}_{e}(\mathbf{F}(n))$
subjected to
$$\sum_{n=0}^{N-1} \left\langle \left\| \mathbf{F}(n) \mathbf{b}(n,i) \right\|^{2} \right\rangle = \sum_{n=0}^{N-1} \operatorname{tr} \left\{ \mathbf{F}(n) \mathbf{F}^{H}(n) \right\} = \boxed{P_{0}}$$

Total average transmit power

Simulation Conditions

Modulation	QPSK
Tx, Rx antenna (N _T x N _R)	2 x 2
Data stream M	2
OFDM packet format	IEEE802.11a
	(Preamble: 2 symbols,
	Data: 10 symbols)
Total subcarrier	64
Effective subcarrier	52 (Pilot:4, Data:48)
GI length	16 points
Channel model	17 path exponential decay
	Rayleigh fading
Maximum Doppler freq.	0 Hz
CSI at Rx	MMSE channel estimation (λ =1.0)
CSI at Tx	CSI from Rx + Quantization error
	(σ _υ ² =0.001-0.1)
Signal detection	MLD

5

Average BER Performance

Robustness to Quantization Error

Conclusions and Future Works

- Conclusions: Proposed MBER precoding technique under imperfect CSI
 - Consider channel estimation and quantization errors as CSI imperfection
 - Average PEP with respect to CSI errors
 - Employ steepest descent algorithm for optimization
 - Improve BER robustness to imperfect CSI

Future Works:

- Improvement of optimization and reduction of CSI amount
- Precoding technique for time-varying channel