MIMO-OFDM Precoder for Minimizing BER Upper Bound of MLD under Imperfect CSI

MCRG Joint Seminar, June the 12th, 2008
(Previously presented at ICC 2008, Beijing on May the 21st, 2008)

Boonsarn Pitakdumrongkija, Kazuhiko Fukawa, and Hiroshi Suzuki
Suzuki-Fukawa Laboratory
Presentation Outline

• Introduction
 – Research background

• Literature Review
 – Precoder for minimizing BER upper bound under perfect CSI
 – Problem identification under imperfect CSI and research objective

• Proposed Precoding Method under Imperfect CSI
 – Criterion formulation and optimization
 – Computer simulation results

• Conclusions
 – Summary and suggestions for future work
Research Background

• Demands for future mobile communications (High Speed + High Reliability)

• Framework: MIMO-OFDM system with feedback channel

• Linear precoding criteria
 - Maximum Capacity
 - Adaptive Modulation Coding (AMC)
 - Waterfilling-based power allocation
 - Non-Capacity Based
 - Fixed modulation and coding
 - Phase and power optimization:
 - Satisfy QoS
 - Minimize transmit power
 - Minimize bit error rate (MBER)

Increase reliability (BER performance):
Focus of this research
Precoding

Transmitted signal replica of MIMO with QPSK and M=2 data streams

- Detection error: Received signal closer to another signal than transmitted one
- MBER precoding: Minimize detection error → Increase reliability
MBER Precoder under Perfect CSI

- Transmitter and receiver: Same CSI
- Procedures at transmitter

1. Calculate BER upper bound $J_e(F)$
2. Optimize F to minimize $J_e(F)$

- Significant BER improvement over spatial multiplexing (nonprecoded) system

Uncoded BER under Perfect CSI

- 2x2 MIMO-OFDM with QPSK
- Perfect CSI
- No AMC

- Eigenmode with Waterfilling Power Loading
- Eigenmode with MMSE Power Loading
- Spatial Multiplexing

Proposed MBER

Average BER vs. Average E_b/N_0 [dB]

6 dB
System Model under Imperfect CSI

- **CSI model**
 - Receiver: Channel Estimation Error
 - Transmitter: Channel Estimation Error + Quantization Error

- **Transmitter and receiver: Different CSI**
Problem and Proposed Solution

• Problem with conventional MBER precoder (designed by assuming perfect CSI)

\[J_e(F) \]

Conventional cost function

CSI error \rightarrow \text{Large Degradation}

\[F_0, F \]

Conventional optimal \quad \text{Calculated value}

• Proposed solution

\[J_e'(F) \]

New cost function

CSI error \rightarrow \text{Small Degradation}

\[F_0', F' \]

New optimal \quad \text{Calculated value}

New BER cost function: Robust to imperfect CSI
Presentation Outline

• Introduction
 – Research background

• Literature Review
 – Precoder for minimizing BER upper bound under perfect CSI
 – Problem identification under imperfect CSI and research objective

• Proposed Precoding Method under Imperfect CSI
 – Criterion formulation and optimization
 – Computer simulation results

• Conclusions
 – Summary and suggestions for future work
MIMO-OFDM Transmitter

- System with N_T transmit and N_R receive antennas

$M \leq \min\{N_T, N_R\}$ data streams

$\text{Modulation signal vector } b(n,i)$

$\text{Baseband transmitted signal vector } s(n,i) = F(n)b(n,i)$

k-th antenna transmitted signal $x_k(p) = \text{IDFT}\{s_k(n,i)\}$
MIMO-OFDM Receiver

\[r_l(p) = \sum_{k=1}^{N_T} \sum_{d=0}^{D} h_{lk,d}^T x_k(p-d) + n_l(p) \]

1 - th antenna received signal:

Baseband received signal vector:

\[y(n,i) = \mathbf{H}(n) \mathbf{F}(n) \mathbf{b}(n,i) + \mathbf{z}(n,i) \]

\(h_{lk,d} \) d-th path impulse response between l-th and k-th antennas

\(x_k \) signal received antenna k

\(r_l(p) \) baseband signal received on antenna l

\(n_l(p) \) zero mean AWGN noise with variance \(\sigma_n^2 \)

\(y(n,i) \) output of the frequency domain channel estimation

\(\mathbf{H}(n) \) frequency response matrix, \(N_R \times N_T \)

\(\mathbf{F}(n) \) frequency response matrix, \(N_T \times 1 \)

\(\mathbf{b}(n,i) \) transmitted symbol

\(\mathbf{z}(n,i) \) noise vector, \(N_R \times 1 \)
CSI Error Model

- CSI at receiver: \(\hat{h}_{lk,d} = h_{lk,d} + \psi_{lk,d} \)
 Estimation error

- CSI at transmitter: \(\hat{h}_{lk,d} = h_{lk,d} + \psi_{lk,d} + \nu_{lk,d} \)
 Quantization error

- MMSE channel estimation

- Estimation error statistics:
 \[\langle \psi_l \rangle = 0 \]
 \[\langle \psi_l \psi_l^H \rangle \approx \sigma_n^2 \mathbf{I} \]

- Quantization error statistics:
 \[\langle \nu_{lk,d} \rangle = 0 \]
 \[\langle \nu_{l1,k1,1}^* \nu_{l2,k2,2} \rangle = \sigma_v^2 \delta_{l1,l2} \delta_{k1,k2} \delta_{d1,d2} \]
 \[\sigma_v^2 / 2 = S_v^2 / 12 \]

- If \(\text{Re}\{h_{lk,d}\} \in [-1,1] \), then
 \[B = \log_2 \left(\frac{2}{S_v} \right) \]
 No. of quantizing bit per path
Pairwise Error Probability (PEP)

- Detection error condition when σ_v^2 is small

$$\left\| y(n,i) - \hat{H}(n)F(n)b(n,i) \right\|^2 > \left\| y(n,i) - \hat{H}(n)F(n)c(n,i) \right\|^2$$

- PEP averaged with respect to CSI errors

$$P(\tilde{b} \rightarrow \tilde{c} | \hat{H}) = \int_0^\infty p(\varepsilon)d\varepsilon = \frac{1}{2}\text{erfc} \sqrt{\gamma(\tilde{b} \rightarrow \tilde{c})}$$

Joint p.d.f. between AWGN and CSI errors

$$\gamma(\tilde{b} \rightarrow \tilde{c}) = \left\| \hat{H}(n)F(n)[b(n,i) - c(n,i)] \right\|^2 / 4\sigma_e^2(F(n))$$

Error variance: $\sigma_e^2(F(n)) = N^{-1}\sigma_n^2 + \left[F(n)b(n,i) \right]^H \Delta(n) [F(n)b(n,i)]$

Conventional

Proposed additional term

CSI errors: $\Delta(n) = \left\langle \Psi^H(n)\Psi(n) \right\rangle + \left\langle Y^H(n)Y(n) \right\rangle$

Estimation error

Quantization error
BER Upper Bound Minimization

- **BER upper bound cost function**

\[
J_e (\mathbf{F}(n)) = \sum_{i} \sum_{b \neq c} N_e (b \rightarrow \tilde{c}) P(\tilde{b} \rightarrow \tilde{c} | \hat{H})
\]

All pairs of \(b(n,i)\) and \(c(n,i)\)

No. of error bit when \(c(n,i)\) rather than \(b(n,i)\) is detected

- **Solution for optimal precoding matrix**

\[
\mathbf{F}_o (n) = \text{arg min}_{\mathbf{F}(n)} J_e (\mathbf{F}(n))
\]

Mathematically Untraceable

- **Optimization by the steepest descent algorithm**

\[
\mathbf{F}^{(q)} (n) = \mathbf{F}^{(q-1)} (n) - \mu \frac{\partial J_e (\mathbf{F}(n))}{\partial \mathbf{F}^* (n)} \mathbf{F}^{(q-1)} (n)
\]

Iteration index

Real positive constant

Gradient of \(J_e (\mathbf{F}(n))\)

subjected to

\[
\sum_{n=0}^{N-1} \left\langle \| \mathbf{F}(n) \mathbf{b}(n,i) \|^2 \right\rangle = \sum_{n=0}^{N-1} \text{tr} \left\{ \mathbf{F}(n) \mathbf{F}^H (n) \right\} = [P_0]
\]

Total average transmit power
Simulation Conditions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation</td>
<td>QPSK</td>
</tr>
<tr>
<td>Tx, Rx antenna (NT x NR)</td>
<td>2 x 2</td>
</tr>
<tr>
<td>Data stream M</td>
<td>2</td>
</tr>
<tr>
<td>OFDM packet format</td>
<td>IEEE802.11a</td>
</tr>
<tr>
<td></td>
<td>(Preamble: 2 symbols, Data: 10 symbols)</td>
</tr>
<tr>
<td>Total subcarrier</td>
<td>64</td>
</tr>
<tr>
<td>Effective subcarrier</td>
<td>52 (Pilot:4, Data:48)</td>
</tr>
<tr>
<td>GI length</td>
<td>16 points</td>
</tr>
<tr>
<td>Channel model</td>
<td>17 path exponential decay Rayleigh fading</td>
</tr>
<tr>
<td>Maximum Doppler freq.</td>
<td>0 Hz</td>
</tr>
<tr>
<td>CSI at Rx</td>
<td>MMSE channel estimation ((\lambda=1.0))</td>
</tr>
<tr>
<td>CSI at Tx</td>
<td>CSI from Rx + Quantization error ((\sigma_v^2=0.001-0.1))</td>
</tr>
<tr>
<td>Signal detection</td>
<td>MLD</td>
</tr>
</tbody>
</table>
Average BER Performance

2x2 MIMO-OFDM QPSK Modulation

Average BER vs. Average E_b/N_0 [dB]

- Perfect CSI
- Estimated CSI with $\sigma^2 = 0.03$ (3 bits/path)
- Spatial Multiplexing
- Conventional MBER
- Proposed MBER

2 dB Improvement
Robustness to Quantization Error

2x2 MIMO-OFDM with QPSK Modulation
Average BER = 10^{-3}
CSI at Tx = Quantized estimated CSI

Average E_b/N_0 [dB]

Quantization Error (σ^2_v)

Spatial Multiplexing

Conventional MBER

Proposed MBER

0.06 (2 bits/path)
Conclusions: Proposed MBER precoding technique under imperfect CSI

- Consider channel estimation and quantization errors as CSI imperfection
- Average PEP with respect to CSI errors
- Employ steepest descent algorithm for optimization
- Improve BER robustness to imperfect CSI

Future Works:

- Improvement of optimization and reduction of CSI amount
- Precoding technique for time-varying channel