Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks XPR RMS Delay Spread CPR

Summary

Presented at IEICE TR (AP 2007-02) MIMO Radio Propagation Channel Measurements in a Small Urban Macrocell at 4.5GHz

Seminar, *Mobile Communications Research Group* 07 June 2007

Lawrence Materum Takada Laboratory Department of International Development Engineering Graduate School of Science and Engineering Tokyo Institute of Technology

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks XPR RMS Delay Spread CPR

Summary

Contents

Some Introductions Why model?

2 Channel Sounding Setup MIMO Channel Sounder Environment Setting Parameter Estimation

3 Propagation Channel Scenarios

Some Remarks XPR RMS Delay Spread CPR

Summary

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks XPR RMS Delay Spread CPR

Summary

Why model?

One of the general goals of MIMO propagation channel modeling:

MIMO performance exploitation for future cellular communication systems

Double-directional channel model

antenna independent

4.5 GHz

- part of the spectrum proposed for 4G mobile networks by Japan
- not many channel sounding has been done at this frequency
 - especially in considering certain parameters based
 on the polarimetric information

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks XPR RMS Delay Spread CPR

Summary

Why model?

Goal: show certain characteristics of selected propagation channels in terms of condensed parameters

- root-mean-square (rms) delay spread
- cross-polarization ratio (XPR)
- co-polarization ratio (CPR)

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder

Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks XPR RMS Delay Spread CPR

Summary

How did we measure the channel?

Medav RUSK-Fujitsu MIMO Channel Sounder

Carrier frequency	4.5 GHz
Bandwidth	120 MHz
BS Antenna	Uniform Rectangular Array
	V & H polarization
	4-x-2 patch antenna elements
MS Antenna	Stacked Uniform Circular Array
	V & H polarization
	24-x-2 patch antenna elements
Tx Signal	Wideband Multicarrier
	Spread Spectrum
Tx Power	40 dBm
Maximum path delay	3.2 µs

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder

Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks XPR RMS Delay Spread CPR

Summary

How did we measure the channel?

Medav RUSK-Fujitsu MIMO Channel Sounder

BS Antenna

MS Antenna

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder

Environment Setting

Parameter Estimation

Propagation Channel Scenarios

Some Remarks XPR RMS Delay Spread CPR

Summary

Where and how did we measure the channel?

Measurement site

Kamikodanaka, Nakahara-ku, Kawasaski City

> a mix of residential, commercial, & industrial zones

Dynamic measurements

- 20-meter lengths
- performed after midnight

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

- MIMO Channel Sounder
- Environment Setting

Parameter Estimation

Propagation Channel Scenarios

Some Remarks XPR RMS Delay Spread CPR

Summary

Where and how did we measure the channel?

Small macrocell setup

- BS height: ~85 m
 - highest location within the MS locations

MS height: ${\sim}1.8~\text{m}$

- nearest point: ~215 m
- farthest point: ~430 m

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting

Parameter Estimation

Propagation Channel Scenarios

Some Remarks XPR RMS Delay Spread CPR

Summary

How and what were the parameters extracted?

Offline data processing

- obtain parameter estimates of the propagation channel
- multidimensional maximum-likelihood algorithm
 - based on the double-directional channel concept

Estimated parameters of each radio path

- direction of arrival (DoA); azimuth & elevation
- direction of departure (DoD); azimuth & elevation
- delay time
- complex amplitude of the polarimetric components $(\gamma_{VV}, \gamma_{VH}, \gamma_{HV}, \gamma_{VV})$

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks XPR RMS Delay Spread CPR

Summary

Channel Scenario Descriptions

Label	BS-MS distance (m)	Description
С	${\sim}400$	better LOS among the other scenarios
J	~320	a building blocked most of the measurement —mostly NLOS-like scenario
N	~267	main obstructions: trees & buildings, but they did not completely block the channel
S	~232	better LOS than scenarios J & N

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks XPR RMS Delay Spread CPR

Summary

Some Remarks (1)

MS moved toward the BS

scenario C towards scenario S

Irregular measurement route

not like a Kyoto-street grid

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks

RMS Delay Spread CPR

Summary

Some Remarks (2)

Computation of condensed parameters

- relatively strong paths—until 20 dBm below the normalized strongest path (0 dBm)
- considered specular paths only & not the diffuse components

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks

XPR

RMS Delay Spread CPR

Summary

XPR - amount of polarization change of a signal from being V-polarized to being H-polarized, or vice versa

$$\begin{split} \text{XPR}(s)_{V}^{BS} &= 10 \text{log}_{10} \left(\frac{\sum_{l=1}^{L(s)} |\gamma_{VV,l}|^{2}}{\sum_{l=1}^{L(s)} |\gamma_{VH,l}|^{2}} \right) [\text{dB}] \\ \text{XPR}(s)_{H}^{BS} &= 10 \text{log}_{10} \left(\frac{\sum_{l=1}^{L(s)} |\gamma_{HH,l}|^{2}}{\sum_{l=1}^{L(s)} |\gamma_{HV,l}|^{2}} \right) [\text{dB}] \\ \text{XPR}(s)_{V}^{MS} &= 10 \text{log}_{10} \left(\frac{\sum_{l=1}^{L(s)} |\gamma_{VV,l}|^{2}}{\sum_{l=1}^{L(s)} |\gamma_{HV,l}|^{2}} \right) [\text{dB}] \end{split}$$

$$\mathsf{XPR}(s)_{\mathrm{H}}^{\mathrm{MS}} = \mathsf{10log}_{\mathsf{10}} \left(rac{\sum_{l=1}^{L(s)} |\gamma_{\mathrm{HH},l}|^2}{\sum_{l=1}^{L(s)} |\gamma_{\mathrm{VH},l}|^2}
ight) [\mathrm{dB}]$$

XPR

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks

XPR

RMS Delay Spread CPR

Summary

Most of the scenarios preferred V-polarized signals

Scenarios J & S

lower polarization change than in scenarios N & C

XPR

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks

XPR

RMS Delay Spread CPR

Summary

Scenario J

highest mean XPR; low variation

• interacting objects (IOs) of the building: mostly present throughout the measurement route

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks

XPR

RMS Delay Spread CPR

Summary

XPR

Scenario J

IOs of the building: mostly present throughout the measurement route

XPR

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks

XPR

RMS Delay Spread CPR

Summary

Scenario C

least mean XPR; highest variation

- LOS presence in most of the measurement route
 - preserved the co-polarized components

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks

XPF

RMS Delay Spread CPR

Summary

XPR

Scenario C

least mean XPR; highest variation

- LOS presence in most of the measurement route
 - · preserved the co-polarized components
- positions of the IOs near the MS
 - contributed to changing the polarization
 - many horizontally oriented IO positions

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks XPR

RMS Delay Spread

CPR

Summary

RMS Delay Spread

Scenario J was the most spread

Scenarios N & S were the less spread

- relative nearness of the MS to the BS
- weaker LOS in scenario N than in scenario S

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks

XPR

RMS Delay Spread

CPR

Summary

RMS Delay Spread

Scenario N should had been more spread, but not in our case

- constructively rich scattering in scenario N
- scenario N had an obstructed line-of-sight-like (OLOS-like) setting

CPR

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks XPR RMS Delay Spread

CPR

Summary

The dB value of the CPR (like in XPR) was used for the statistics, assuming the log-normal distribution

$$CPR(s) = 10\log_{10} \left(\frac{\sum_{l=1}^{L(s)} |\gamma_{VV,l}|^2}{\sum_{l=1}^{L(s)} |\gamma_{HH,l}|^2} \right) [dB]$$

CPR

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks XPR RMS Delay Spread

Summary

Scenario N

- fewer vertically oriented IOs than that in scenario J
- difficult to decide which of the IOs were predominant
 - highest CPR standard deviation

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks XPR RMS Delay Spread

Summary

CPR

Scenario N

difficult to decide which of the IOs were predominant

Lawrence Materum

Some Introductions Why model?

Channel Sounding Setup

MIMO Channel Sounder Environment Setting Parameter Estimation

Propagation Channel Scenarios

Some Remarks XPR RMS Delay Spread CPR

Summary

Conclusions

Polarization change

- LOS presence did not assure co-polarized components
- orientation of the IOs surrounding the BS or MS
- XPR higher in our NLOS scenario than in our LOS scenario

RMS delay spread

more spread in the NLOS scenario but lesser in the LOS scenario

Overall, the results follow the general channel behavior of macrocell scenarios

but, environment-specific circumstances make propositions about MIMO propagation channel characteristics difficult