Mobile Group Seminar

Reduction of AOA estimation error due to perturbation in array response by spatial smoothing preprocessing

> Panarat Cherntanomwong, Jun-ichi Takada Tokyo Institute of Technology

> > Hiroyuki Tsuji National Institute of Information and Communications Technology

(Presented in International Symposium on Antennas and Propagation (ISAP) 2006 at Singapore on Nov. 1-4, 2006)

Table of Contents

- Background
- Measurement system
- AOA estimation result by applying SSP
- Generalization of problem formulation
- Conclusion and Future works

Background (1)

- Subspace-based AOA estimation, e.g. MUSIC/ ESPRIT, requires the precise array response.
- In practice, it is difficult to obtain the precise array response even if the antenna calibration is applied.
- Therefore, methods to compensate the calibration error are required.

Background (2)

How to compensate the error in the array response?

- In 1993, Hari and Gummadavelli proposed the performance analysis of subspace methods for estimating AOA due to SSP in the presence of array model errors.
 - SSP can improve the performance of ESPRIT and Min-Norm in the presence of errors in the array response, but it is not so for MUSIC.
 - The theoretical expressions were well derived, but complicated and verified by only simulation.
- Objective

To investigate the possibility of SSP to reduce the random error in the array response in real systems.

Experiment (1): Anechoic chamber

curvature of spherical wavefront is compensated to far-field planar wavefront before data processing.

Experiment (2): Specification of experiment

Antenna array

Shape of array	Uniform linear array
Number of elements	10
Element spacing	0.8 λ
Antenna element	Patch antenna
Antenna gain	7 dBi

Transmitter

Frequency	1.74 GHz
Antenna	Horn antenna
Antenna gain	14.67 dBi
Tx power	-30 dBm
Modulation	GMSK

Experiment (3): Open site

Moving Tx where AOA at Rx are known in range -6 to 6 degrees.

Signal Model

The array output vector can be modeled as

 $\mathbf{x}(t) = \mathbf{a} s(t) + \mathbf{n}(t)$

1) $d\sin\theta$ $d\sin\theta$ where s(t) is an arriving signal $\boldsymbol{n}(t)$ is a noise vector $a = [1, e^{j\phi_1}, e^{j\phi_2}, ..., e^{j\phi_M}]^T$ $x_1(t) = x_2(t) = x_k(t)$ $x_{M}(t)$ and ϕ_m is the nominal phase of the m^{th} element; $\phi_m = (m-1)\omega$

s(t)

θ

 $\omega = 2\pi d \sin(\theta) / \lambda$ is the phase difference between adjacent elements. The output covariance matrix of the single source can be written as

$$\boldsymbol{R} = E[\boldsymbol{x}(t)\boldsymbol{x}^{H}(t)] = \sigma_{s}^{2}\boldsymbol{a}\boldsymbol{a}^{H} + \sigma_{n}^{2}\boldsymbol{I}$$
$$= \lambda_{s}\boldsymbol{u}_{s}\boldsymbol{u}_{s}^{H} + \sigma_{n}^{2}\boldsymbol{I}$$

AOA estimation using subspace-based approaches: ESPRIT and MUSIC.

Spatial smoothing preprocessing: Forward-only SSP

The output vector of the l^{th} subarray, $\mathbf{x}_{l}^{f}(t) = \mathbf{a}_{l} s(t) + \mathbf{n}_{l}(t), \ l = 1, 2, ..., L$ \mathbf{M} where $\mathbf{a}_{l} = [a_{l}, a_{l+1}, ..., a_{l+M_{0}-1}]^{T}$, and $\mathbf{n}_{l}(t) = [n_{l}(t), n_{l+1}(t), ..., n_{l+M_{0}-1}(t)]^{T}$,

The covariance matrix of the l^{th} subarray is given by

$$\boldsymbol{R}_{l}^{f} = E[\boldsymbol{x}_{l}^{f}(t)(\boldsymbol{x}_{l}^{f}(t))^{H}] = \sigma_{s}^{2}\boldsymbol{a}_{l}\boldsymbol{a}_{l}^{H} + \sigma_{n}^{2}\boldsymbol{I},$$

therefore the forward spatially smoothed covariance matrix is

$$\boldsymbol{R}_{F} = \frac{1}{L} \sum_{l=1}^{L} \boldsymbol{R}_{l}^{f} = \sigma_{s}^{2} \left\{ \frac{1}{L} \sum_{l=1}^{L} \boldsymbol{a}_{l} \boldsymbol{a}_{l}^{H} \right\} + \sigma_{n}^{2} \boldsymbol{I}.$$

Result of AOA Estimation Error Measured result in anechoic chamber (1)

The optimal number of subarrays can be observed at L = 5 and 6.

Result of AOA Estimation Error Measured result in anechoic chamber (2)

The performance of ESPRIT is improved by applying SSP.

Result of AOA Estimation Error Measured result in open site

The performance of ESPRIT is improved by applying SSP.

Problem Formulation: Error in Array Model

$$a_m = e^{j\phi_m}$$
 Gain and phase errors

The array output vector with error in the array response

$$\tilde{\boldsymbol{x}}(t) = \Gamma \boldsymbol{a} s(t) + \boldsymbol{n}(t)$$

; $\Gamma = diag[\boldsymbol{\gamma}_1, \boldsymbol{\gamma}_2, \dots, \boldsymbol{\gamma}_M]$
 $\tilde{\boldsymbol{x}}(t) = \tilde{\boldsymbol{a}} s(t) + \boldsymbol{n}(t)$

The output covaraince matrix becomes

$$\tilde{\boldsymbol{R}} = E[\tilde{\boldsymbol{x}}(t)\tilde{\boldsymbol{x}}^{H}(t)] = \sigma_{s}^{2}\tilde{\boldsymbol{a}}\tilde{\boldsymbol{a}}^{H} + \sigma_{n}^{2}\boldsymbol{I}$$

By applying FSS, $\tilde{\boldsymbol{R}}_{F} = \frac{1}{L} \sum_{l=1}^{L} \tilde{\boldsymbol{R}}_{l} = \sigma_{s}^{2} \left\{ \frac{1}{L} \sum_{l=1}^{L} \tilde{\boldsymbol{a}}_{l} \tilde{\boldsymbol{a}}_{l}^{H} \right\} + \sigma_{n}^{2} \boldsymbol{I}.$

$$\tilde{a}_{m} = (1 + \tilde{g}_{m}) e^{j(\phi_{m} + \tilde{\phi}_{m})}$$
$$\tilde{a}_{m} = \gamma_{m} a_{m}; \gamma_{m} = (1 + \tilde{g}_{m}) e^{j\tilde{\phi}_{m}}$$
Assume: $\tilde{\phi} \sim N(0, \sigma_{\phi}^{2})$
$$\tilde{g} \sim N(0, \sigma_{g}^{2})$$

Capability of SSP in reducing error (1): Phase error case

Focusing only on the part of the array response of the above eq.;

$$B = \frac{1}{L} \sum_{l=1}^{L} B_{l} = \frac{1}{L} \sum_{l=1}^{L} \tilde{a}_{l} \tilde{a}_{l}^{H}$$

$$= \frac{1}{L} \sum_{l=1}^{L} \begin{bmatrix} 1 & e^{-j\omega} e^{-j(\tilde{\phi}_{l+1} - \tilde{\phi}_{l})} & \cdots & e^{-j(M_{0} - 1)\omega} e^{-j(\tilde{\phi}_{l+M_{0} - 1} - \tilde{\phi}_{l})} \\ e^{j\omega} e^{j(\tilde{\phi}_{l+1} - \tilde{\phi}_{l})} & 1 & \cdots & e^{-j(M_{0} - 2)\omega} e^{-j(\tilde{\phi}_{l+M_{0} - 1} - \tilde{\phi}_{l+1})} \\ \vdots & \ddots & \vdots \\ e^{j(M_{0} - 1)\omega} e^{j(\tilde{\phi}_{l+M_{0} - 1} - \tilde{\phi}_{l})} & e^{j(M_{0} - 2)\omega} e^{j(\phi_{l+M_{0} - 1} - \phi_{l+1})} & \cdots & 1 \end{bmatrix}$$

To first order of Taylor expansion:

$$\frac{1}{L}\sum_{l=1}^{L} e^{j(\tilde{\phi}_{l+1}-\tilde{\phi}_{l})} = 1 + \frac{j}{L}\sum_{l=1}^{L} (\tilde{\phi}_{l+1}-\tilde{\phi}_{l})$$
$$= 1 + \frac{j}{L} (\tilde{\phi}_{L+1}-\tilde{\phi}_{1})$$
$$\sim N(0, \frac{2\sigma^{2}}{L^{2}})$$

Phase error at p-row, q-column is distributed with

$$\boldsymbol{\zeta}_{pq} \sim N(0, 2|p-q|\frac{\sigma_{\phi}^{2}}{L^{2}})$$

for
$$p \neq q$$

STD of the phase error reduces according to L.

Capability of SSP in reducing error (2)

Gain error case:

Gain error at p-row and q-column is distributed with

 $\eta_{pq} \sim N(0, \frac{2\sigma_g^2}{L})$ STD of the gain error reduces according to L.

Tradeoff:

* if L increases, STD of gain error decrease... But M_0 also decreases. This means resolution of AOA estimation decrease. (Since resolution is proportional to no. of elements)

Phase error case:

Phase error at p-row and q-column is distributed with

$$\zeta_{pq} \sim N(0, 2|p-q|\frac{\sigma_{\phi}^2}{L^2})$$
 for $p \neq q$

AOA estimation error caused by gain error:

15

Simulation Condition

Number of element (M)	16
Element Spacing (d)	Half a wavelength
AOA	6 [deg]
Signal SNR	10 dB
Number of snapshots	500
Number of trials	100

Simulation Result

STD of estimated AOA by applying FSS with the number of subarrays (L) shown is smaller that that without applying FSS for both cases of gain and phase errors. 17

Optimal number of subarrays Measured data in anechoic chamber

• The optimal number of subarrays can be observed and agrees with the theoretical formular the case of phase error.

• Our measured data were possibly only affected by phase errors in the array response.

Conclusion and Future work

- SSP can reduce the random error in the array response occurred in the real senarios, which is verified by the improved result of the meaured-data estimation.
 - Lessening of the error of estimated AOAs.
 - Applicable in real scenarios (at least to the extent verified by our measurement system and under the field experiment conditions).
- The problem formulas according to the gain and phase error in the array response are generalized and their performances were verified by simulation.
- The optimal number of sub-arrays was also investigated to obtain the most effectiveness of SSP.
- Future works: To investigate its applicability for the multiple sources case in real systems.

Thank you very much for your attention.

What is the advantage if AOA errors reduce?

Application for Mobile localization system

Error in AOA estimation deceases (ex. $\theta_1 - \theta_2 = 0.09$ deg.)

Error in the deteched distance deceases ($d_1 - d_2 = 1.2 \text{ m}$)

More precise in dectecting the required mobile terminal.