Reduction of AOA estimation error due to perturbation in array response by spatial smoothing preprocessing

Panarat Cherntanomwong, Jun-ichi Takada
Tokyo Institute of Technology

Hiroyuki Tsuji
National Institute of Information and Communications Technology

Table of Contents

• Background
• Measurement system
• AOA estimation result by applying SSP
• Generalization of problem formulation
• Conclusion and Future works
Background (1)

• Subspace-based AOA estimation, e.g. MUSIC/ ESPRIT, requires the precise array response.

• In practice, it is difficult to obtain the precise array response even if the antenna calibration is applied.

• Therefore, methods to compensate the calibration error are required.
How to compensate the error in the array response?

• In 1993, Hari and Gummadavelli proposed the performance analysis of subspace methods for estimating AOA due to SSP in the presence of array model errors.
 – SSP can improve the performance of ESPRIT and Min-Norm in the presence of errors in the array response, but it is not so for MUSIC.
 – The theoretical expressions were well derived, but complicated and verified by only simulation.

• Objective

To investigate the possibility of SSP to reduce the random error in the array response in real systems.
Remark: Because of near-field measurement, the signal has spherical wavefront. So, the phase curvature of spherical wavefront is compensated to far-field planar wavefront before data processing.
Experiment (2): Specification of experiment

Transmitter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>1.74 GHz</td>
</tr>
<tr>
<td>Antenna</td>
<td>Horn antenna</td>
</tr>
<tr>
<td>Antenna gain</td>
<td>14.67 dBi</td>
</tr>
<tr>
<td>Tx power</td>
<td>-30 dBm</td>
</tr>
<tr>
<td>Modulation</td>
<td>GMSK</td>
</tr>
</tbody>
</table>

Antenna array

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape of array</td>
<td>Uniform linear array</td>
</tr>
<tr>
<td>Number of elements</td>
<td>10</td>
</tr>
<tr>
<td>Element spacing</td>
<td>0.8λ</td>
</tr>
<tr>
<td>Antenna element</td>
<td>Patch antenna</td>
</tr>
<tr>
<td>Antenna gain</td>
<td>7 dBi</td>
</tr>
</tbody>
</table>
Experiment (3): Open site

Moving Tx where AOA at Rx are known in range -6 to 6 degrees.
The array output vector can be modeled as:
\[
x(t) = a s(t) + n(t)
\]
where \(s(t) \) is an arriving signal, \(n(t) \) is a noise vector:
\[
a = [1, e^{j\phi_1}, e^{j\phi_2}, ..., e^{j\phi_M}]^T
\]
and \(\phi_m \) is the nominal phase of the \(m^{th} \) element; \(\phi_m = (m-1)\omega \)
\[
\omega = 2\pi d \sin(\theta) / \lambda
\]
is the phase difference between adjacent elements.

The output covariance matrix of the single source can be written as:
\[
R = E[x(t)x^H(t)] = \sigma_s^2 a a^H + \sigma_n^2 I
\]
\[
= \lambda_s u_s u_s^H + \sigma_n^2 I
\]

AOA estimation using subspace-based approaches: ESPRIT and MUSIC.
The output vector of the \(l^{th} \) subarray,
\[
x_l^f(t) = a_l s(t) + n_l(t), \quad l = 1, 2, \ldots, L
\]
where
\[
a_l = [a_l, a_{l+1}, \ldots, a_{l+M_0-1}]^T,
\]
and
\[
n_l(t) = [n_l(t), n_{l+1}(t), \ldots, n_{l+M_0-1}(t)]^T.
\]

The covariance matrix of the \(l^{th} \) subarray is given by
\[
R_l^f = E\left[x_l^f(t)(x_l^f(t))^H \right] = \sigma_s^2 a_l a_l^H + \sigma_n^2 I,
\]

therefore the forward spatially smoothed covariance matrix is
\[
R_F = \frac{1}{L} \sum_{l=1}^{L} R_l^f = \sigma_s^2 \left\{ \frac{1}{L} \sum_{l=1}^{L} a_l a_l^H \right\} + \sigma_n^2 I.
\]
Result of AOA Estimation Error
Measured result in anechoic chamber (1)

The optimal number of subarrays can be observed at $L = 5$ and 6.
The performance of ESPRIT is improved by applying SSP.
The performance of ESPRIT is improved by applying SSP.
Problem Formulation:
Error in Array Model

\[a_m = e^{j\phi_m} \quad \text{Gain and phase errors} \]

The array output vector with error in the array response
\[\tilde{x}(t) = \Gamma a s(t) + n(t) \]
\[\Gamma = \text{diag} \left[\gamma_1, \gamma_2, \ldots, \gamma_M \right] \]
\[\tilde{x}(t) = \tilde{a} s(t) + n(t) \]

The output covariance matrix becomes
\[\tilde{R} = E \left[\tilde{x}(t) \tilde{x}^H(t) \right] = \sigma_s^2 \tilde{a} \tilde{a}^H + \sigma_n^2 I \]

By applying FSS,
\[\tilde{R}_F = \frac{1}{L} \sum_{l=1}^{L} \tilde{R}_l = \sigma_s^2 \left\{ \frac{1}{L} \sum_{l=1}^{L} \tilde{a}_l \tilde{a}_l^H \right\} + \sigma_n^2 I. \]

\[\tilde{a}_m = (1 + \tilde{g}_m) e^{j(\phi_m + \tilde{\phi}_m)} \]
\[\tilde{a}_m = \gamma_m a_m; \gamma_m = (1 + \tilde{g}_m) e^{j\tilde{\phi}_m} \]
Assume:
\[\tilde{\phi} \sim N(0, \sigma_\phi^2) \]
\[\tilde{g} \sim N(0, \sigma_g^2) \]
Focusing only on the part of the array response of the above eq.;

\[B = \frac{1}{L} \sum_{l=1}^{L} B_l = \frac{1}{L} \sum_{l=1}^{L} \tilde{a}_l \tilde{a}_l^H \]

\[= \frac{1}{L} \sum_{l=1}^{L} \begin{bmatrix} 1 & e^{-j \omega} e^{-j(\tilde{\phi}_{l+1} - \tilde{\phi}_l)} & \cdots & e^{-j(M_0-1)\omega} e^{-j(\tilde{\phi}_{l+M_0-1} - \tilde{\phi}_l)} \\ e^{j \omega} e^{j(\tilde{\phi}_{l+1} - \tilde{\phi}_l)} & 1 & \cdots & e^{-j(M_0-2)\omega} e^{-j(\tilde{\phi}_{l+M_0-2} - \tilde{\phi}_{l+1})} \\ \vdots & \vdots & \ddots & \vdots \\ e^{j(M_0-1)\omega} e^{j(\tilde{\phi}_{l+M_0-1} - \tilde{\phi}_l)} & e^{j(M_0-2)\omega} e^{j(\tilde{\phi}_{l+M_0-2} - \tilde{\phi}_{l+1})} & \cdots & 1 \end{bmatrix} \]

To first order of Taylor expansion:

\[\frac{1}{L} \sum_{l=1}^{L} e^{j(\tilde{\phi}_{l+1} - \tilde{\phi}_l)} = 1 + \frac{j}{L} \sum_{l=1}^{L} (\tilde{\phi}_{l+1} - \tilde{\phi}_l) \]

\[= 1 + \frac{j}{L} (\tilde{\phi}_{L+1} - \tilde{\phi}_1) \]

\[\sim N(0, \frac{2 \sigma^2}{L^2}) \]

Phase error at p-row, q-column is distributed with

\[\zeta_{pq} \sim N \left(0, 2|p-q| \frac{\sigma^2_\phi}{L^2} \right) \]

for \(p \neq q \)

STD of the phase error reduces according to \(L \).
Capability of SSP in reducing error (2)

Gain error case:
Gain error at p-row and q-column is distributed with
\[\eta_{pq} \sim N(0, \frac{2\sigma_g^2}{L}) \]
STD of the gain error reduces according to L.

Tradeoff:
* if L increases, STD of gain error decrease...
But \(M_0\) also decreases.. This means resolution of AOA estimation decrease.
(Since resolution is proportional to no. of elements)

Phase error case:
Phase error at p-row and q-column is distributed with
\[\zeta_{pq} \sim N(0, 2|p-q| \frac{\sigma_{\phi}^2}{L^2}) \quad \text{for} \quad p \neq q \]

AOA estimation error caused by gain error:
\[\varepsilon_g \propto \frac{1}{LM_0} \]
\[\varepsilon_g \propto \frac{1}{L(M - L + 1)} \]
Maximizing by taking its first derivative

The optimal number of subarrays:
\[L_{opt} = \frac{M + 1}{2} \]

The optimal number of subarrays:
\[L_{opt} = \frac{M}{3} \quad \text{for} \quad L < M_0 \]
\[L_{opt} = \frac{2M}{3} \quad \text{for} \quad L > M_0 \]
Simulation Condition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of element (M)</td>
<td>16</td>
</tr>
<tr>
<td>Element Spacing (d)</td>
<td>Half a wavelength</td>
</tr>
<tr>
<td>AOA</td>
<td>6 [deg]</td>
</tr>
<tr>
<td>Signal SNR</td>
<td>10 dB</td>
</tr>
<tr>
<td>Number of snapshots</td>
<td>500</td>
</tr>
<tr>
<td>Number of trials</td>
<td>100</td>
</tr>
</tbody>
</table>
STD of estimated AOA by applying FSS with the number of subarrays (L) shown is smaller than that without applying FSS for both cases of gain and phase errors.
Optimal number of subarrays
Measured data in anechoic chamber

- The optimal number of subarrays can be observed and agrees with the theoretical formula in the case of phase error.
- Our measured data were possibly only affected by phase errors in the array response.
Conclusion and Future work

- SSP can reduce the random error in the array response occurred in the real scenarios, which is verified by the improved result of the measured-data estimation.
 - Lessening of the error of estimated AOAs.
 - Applicable in real scenarios
 (at least to the extent verified by our measurement system and under the field experiment conditions).

- The problem formulas according to the gain and phase error in the array response are generalized and their performances were verified by simulation.

- The optimal number of sub-arrays was also investigated to obtain the most effectiveness of SSP.

- Future works: To investigate its applicability for the multiple sources case in real systems.
Thank you very much for your attention.
What is the advantage if AOA errors reduce?

Application for Mobile localization system

Error in AOA estimation deceases (ex. $\theta_1 - \theta_2 = 0.09$ deg.)

Error in the detected distance deceases ($d_1 - d_2 = 1.2$ m)

More precise in detecting the required mobile terminal.