MIMO-OFDM移動通信用MAP受信機 における ファクターグラフに基づく逐次伝送路推定

Tsuyoshi Kashima

Kazuhiko Fukawa, Hiroshi Suzuki Tokyo Institute of Technology

Outline

- Background
- System Model
- Iterative MAP Receiver
- Message-Passing Algorithm
- Factor Graph of One Packet
- Smoothing and Removing
- Derivation of Recursive Formula
- Simulation
- Conclusion

Background (1/2)

Conventional Technology

- An iterative MAP receiver for LDPC-coded MIMO-OFDM mobile communications is considered.
- The EM algorithm is applied to the MAP symbol detection to reduce the complexity
 - MAP demodulation and channel estimation is performed iteratively

Background (2/2)

Problem

- MMSE CHE cannot sufficiently track the fast fading
- RLS CHE in the iterative MAP symbol detection has a noise amplification problem

Reconsideration of the iterative MAP symbol detection via **the Message-Passing Algorithm**

LDPC-coded MIMO-OFDM

- Rayleigh fading channel: both multi-path and MIMO spatial paths are uncorrelated.
- The first symbol a preamble for channel estimation

Iterative MAP Receiver (1/2)

- Outer loop: Update P(X|Y)
 - Inner loop updates P(Y|X) via MAP symbol detection
 - Channel decoding updates P(X)

Iterative MAP Receiver (2/2)

• MAP detection requires a prohibitive complexity

 $\hat{X} = \arg \max_{X} \log P(X | Y)$ X: transmitted signal Y: received signal H: channel response

• EM algorithm is applied to reduce complexity

E step : $Q\left(X \mid X^{(r)}\right) = E_{H}\left\{\log P\left(Y \mid H, X\right) \mid Y, X^{(r)}\right\}$ M step : $X^{(r+1)} = \arg \max_{X} \left[Q\left(X \mid X^{(r)}\right) + \log P(X)\right]$

Consider the optimal channel estimation algorithm for the inner loop

Message Passing Algorithm

 Calculation of marginal conditional probability functions, such as P(X_i|Y). (e.g. LDPC decoding is a message passing over Tanner graph)

Suitable for the MAP symbol detection

• Iteration for achieving the convergence of a calculation.

The iterative MAP detection can be reconsidered in this context

Factor Graph of One Packet

- The message passing is performed on a factor graph representing the system model.
- The fast fading is modeled as a random walk

Smoothing and Removing

Three types of message passing at each symbol

• (a)+(b): forward and backward RLS CHE

Smoothing is necessary

• (c): CHE for the detection of X_i does not include the direct contribution from X_i

Removing is necessary

Derivation of RLS

(a) corresponds to the RLS channel estimation.

Derivation of S-RLS

Normal Equation $\hat{\mathbf{h}}_{s}(m) = \mathbf{R}_{s}(m)^{-1}\mathbf{V}_{s}(m), \quad \mathbf{P}_{s}(m) = \mathbf{R}_{s}(m)^{-1}$ $\mathbf{R}_{s}(m) = \sum_{m'=0}^{N_{m}-1} \lambda^{|m-m'|} \mathbf{x}(m') \mathbf{x}^{\mathrm{H}}(m')$ $\mathbf{V}_{s}(m) = \sum_{m'=0}^{N_{m}-1} \lambda^{|m-m'|} \mathbf{x}(m') y^{*}(m')$

$$\mathbf{P}_{s}(m) = \mathbf{P}(m) + \lambda^{2} \Big[\mathbf{P}_{s}(m+1) - \lambda^{-1} \mathbf{P}(m) \Big]$$
$$\hat{\mathbf{h}}_{s}(m) = \hat{\mathbf{h}}(m) + \lambda \Big[\hat{\mathbf{h}}_{s}(m+1) - \hat{\mathbf{h}}(m) \Big]$$

Smoothing is performed backward

Derivation of SR-RLS

(c) means that CHE of Hi does not include for Xi

	· · ·	Normal Equation (index <i>i</i> is omitted)	
_		$\hat{\mathbf{h}}_{\mathrm{r}}(m_a) = \mathbf{R}_{\mathrm{r}}(m_a)^{-1} \mathbf{V}_{\mathrm{r}}(m_a), \mathbf{P}_{\mathrm{r}}(m_a) = \mathbf{R}_{\mathrm{r}}(m_a)^{-1}$	
	¢↓	$\mathbf{R}_{\mathrm{r}}(m_{a}) = \mathbf{R}_{\mathrm{s}}(m_{a}) - \sum_{m'=m_{h}}^{m_{r}} \lambda^{ m_{a}-m' } \mathbf{x}(m') \mathbf{x}^{\mathrm{H}}(m')$	
(C)	Xi	$\mathbf{V}_{\mathrm{r}}(m_{a}) = \mathbf{V}_{\mathrm{s}}(m_{a}) - \sum_{m'=m_{b}}^{m_{t}} \lambda^{ m_{a}-m' } \mathbf{x}(m') \mathbf{y}^{*}(m')$	
$m_h(i), m_t(i)$, and $m_a(i)$ are the head, tail and avarage sampling point			
SR-RLS performs <i>Removing</i> after S-RLS			
K	$\hat{\mathbf{h}}_{\mathrm{r}}(m_a;m_h,m) = \hat{\mathbf{h}}_{\mathrm{r}}(m_a;m_h,m-1)$		
	+ $A^{-1}\mathbf{P}_{r}(x)$	+ $A^{-1}\mathbf{P}_{\mathbf{r}}(m_a;m_h,m-1)\mathbf{x}(m)\left\{\mathbf{y}^*(m)-\mathbf{x}^{\mathrm{H}}(m)\hat{\mathbf{h}}_{\mathbf{r}}(m_a;m_h,m-1)\right\}$	
/	$\mathbf{P}_{\mathrm{r}}(m_a;m_h,m) = \mathbf{P}_{\mathrm{r}}(m_a;m_h,m-1)$		
	$+ A^{-1} \mathbf{P}_{\mathbf{r}}$	$m_{a}; m_{b}, m-1$ $\mathbf{x}(m) \mathbf{x}^{H}(m) \mathbf{P}_{a}(m_{a}; m_{b}, m-1)$	

 $+ \mathbf{x}^{\mathrm{H}}(m) \mathbf{P}_{\mathrm{r}}(m_{a}; m_{b}, m-1) \mathbf{x}(m)$

Simulation result ($f_DT_S = 0.02$)

MAP demodulation achieves better PER than ML demodulation
Inner loop with RLS degrades the PER performance (noise amplified)
Inner loop with SR-RLS improves the PER performance in all Eb/No

Simulation condition

MIMO antennas	2 × 2
Modulation	QPSK, 64 subcarriers OFDM
Guard Interval/OFDM duration	16/80
Packet format	1 Preamble OFDM symbol
	+ 16 Data OFDM symbols
RLS forgetting factor	0.99
Channel model	9-path Rayleigh with 0.8-decay
Number of inner (EM) iterations	4
Max number of outer (Turbo) iterations	10
Channel coding	Half-rate LDPC (2048 info. Bits)

Inner loop with S-RLS improves the PER. No PER degradation.
Inner loop with SR-RLS improves the PER performance in all Eb/No

Conclusion

• New recursive channel estimation algorithm (**SR-RLS**) has been proposed via **the message-passing algorithm**.

- Capable to track the fast fading
- Optimal for the iterative MAP receiver
- *Smoothing* uses all symbols for the channel estimation.
- *Removing* modifies S-RLS to remove the direct contribution of the targeted OFDM symbol
- *Removing* is the most effective for the performance improvement.