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Abstract— This paper proposes novel channel estimation meth-
ods for an iterative maximum a posteriori (MAP) receiver.
The targeted systems are low-density parity-check (LDPC)-
coded multiple-input-multiple-output (MIMO) and orthogonal
frequency-division multiplexing (OFDM) mobile communica-
tions. By reconsidering the joint processing of the iterative MAP
receiver from the viewpoint of the message-passing algorithm in
the factor graph, this paper theoretically derives the recursive
least squares (RLS) algorithm with smoothing and removing (SR-
RLS). The computational complexity of SR-RLS is about two
to three times larger than that of the original RLS algorithm.
Computer simulations under fast multipath fading conditions
show that the MAP receiver using the proposed SR-RLS channel
estimator outperforms the one using the conventional RLS
channel estimator.

I. INTRODUCTION

As a transmission scheme to achieve a high bit-rate
and high spectral-efficient mobile communication, orthogonal
frequency-division multiplexing (OFDM) has attracted much
attention because it is a multi-carrier transmission scheme with
a guard interval (GI) and can maintain excellent transmission
performance even in multipath fading channels. In addition,
the multiple-input-multiple-output (MIMO) technique, which
spatially multiplexes data streams by multiple antennas, can
further increase the spectral efficiency. As a channel code
for the MIMO-OFDM system, the low density parity-check
(LDPC) code is promising because it can exploit the time,
frequency, and space diversity owing to its built-in interleaver,
and has great error-correction ability [1], [2].

The optimal signal detection for the LDPC-coded MIMO-
OFDM system is based on maximum a posteriori (MAP) cri-
teria. However, the MAP receiver requires a prohibitively large
amount of computational complexity without any approxima-
tion. Thus, this paper considers an iterative MAP receiver
that can reduce the complexity by an iterative approximation
method for the LDPC-coded MIMO-OFDM system.

As one of the iterative methods, the expectation-
maximization (EM) algorithm [3], [4] has been studied, which
performs the signal detection and the channel estimation itera-
tively so as to asymptotically achieve the MAP detection with
practical complexity [5]-[7]. On the basis of the EM algorithm,
the iterative MAP receiver with the minimum-mean-square-
error (MMSE) channel estimator has been proposed for the

LDPC-coded MIMO OFDM system in [8], [9]. The receivers
with the recursive least squares (RLS) or the least mean square
(LMS) channel estimators have been also proposed to improve
the fading tracking ability [15].

As another theoretical background for the iterative joint
processing of the signal detection and the channel estimation,
the message-passing algorithm in the factor graph is also
considered in this paper. Various algorithms such as the Viterbi
algorithm, the LDPC decoding, and the Kalman filter including
the RLS algorithm can be derived from the message-passing
algorithm [10], [11]. By reconsidering the joint processing
from the message-passing viewpoint, this paper and [16]
propose new channel estimation methods such as smoothing
and removing. In addition to the discussion of [16], this paper
also explains the theoretical derivation of these new proposed
channel estimation algorithms in detail.

The rest of this paper is organized as follows. Section II
presents the system model of the MIMO-OFDM system, and
Section III describes the iterative MAP receiver structure. In
Section IV, the factor graph representations of the system and
the derivation of the novel channel estimation algorithms are
detailed. Section V shows computer simulation results of the
proposed iterative MAP receivers. Finally, some concluding
remarks are given in Section VI.

II. SYSTEM MODEL

Let us consider an LDPC-coded MIMO-OFDM system with
NT transmitter antennas, NR receiver antennas, N subcarri-
ers, and NS OFDM symbols in one packet. In the MIMO-
OFDM transmitter, the LDPC-encoded bit sequence of a
packet is modulated into a serial symbol sequence, and the
serial-parallel transform converts it into NT N parallel symbol
sequences. Let bk(i, n) denote the transmitted symbol from
the k-th (1 ≤ k ≤ NT ) transmitter antenna at the n-th
(0 ≤ n < N) sub-carrier in the i-th (0 ≤ i < NS) OFDM
symbol. Each set of N parallel symbols is passed into the
inverse fast Fourier transform (IFFT) corresponding to each
transmitter antenna, and GI is added to its output every OFDM
symbol. With the OFDM sampling interval ∆t as a time unit,
the GI length is given by ∆G∆t. Thus, the transmitted symbol
sk(m) from the k-th transmitter antenna at discrete time m∆t



can be expressed as

sk(m) =
N−1∑
n=0

bk(i, n) exp
{

j
2πn[m − (i + 1)∆G]

N

}
, (1)

where i(N + ∆G) ≤ m < (i + 1)(N + ∆G).
Let us assume that every channel between transmitter

and receiver antennas is subject to uncorrelated multi-path
Rayleigh fading and is also spatially uncorrelated to each
other. The channel impulse response, hkl(t; τ), between the
k-th transmitter antenna and the l-th receiver antenna at time
t as a function of delay time τ can be modeled as

hlk(t; τ) =
D∑

d=0

αlk,d(t)δ(τ − d∆t) (2)

where D∆t is the maximum delay time, αkl,d(t) represents
the Rayleigh-fading complex envelope on the d-th propagation
path between the k-th transmitter antenna and the l-th receiver
antenna at time t, and δ(·) is the Dirac delta function. In the
MIMO-OFDM receiver, the signal received by the l-th receiver
antenna at discrete time m∆t, which is yl(m), is given by

yl(m) =
NT∑
k=1

D∑
d=0

αlk,d(m∆t)sk(m − d) + nl(m) (3)

where nl(m) is the noise of the l-th receiver antenna at discrete
time m∆t, 0 ≤ m < Nm, and Nm = NS(N + ∆G). The GI
is removed from the received signal of each receiver antenna
every OFDM symbol, and the resultant signal is fed into the
corresponding fast Fourier transform (FFT). Yl(i, n) denotes
the FFT output of the l-th receiver antenna at the n-th sub-
carrier in the i-th OFDM symbol, and can be expressed as

Yl(i, n) =

N−1

(i+1)(N+∆G)−1∑
m=i(N+∆G)+∆G

yl(m) exp
{
−j

2πn[m − (i + 1)∆G]
N

}
.

(4)

On the assumption that the maximum delay time is not
longer than GI, that is D ≤ ∆G, and that αlk,d(m∆t) is
constant during one OFDM symbol, substituting (1) and (3)
into (4) approximately yields

Yl(i, n) =
NT∑
k=1

Hlk(i, n)bk(i, n) + Nl(i, n) (5)

Hlk(i, n) =
D∑

d=0

αlk,d[ma(i)∆t] exp
(
−j

2πnd

N

)
(6)

Nl(i, n) =

N−1

(i+1)(N+∆G)−1∑
m=i(N+∆G)+∆G

nl(m) exp
{
−j

2πn[m − (i + 1)∆G]
N

}

(7)

where αlk,d[ma(i)∆t] is the average value of αlk,d(m∆t) in
the i-th OFDM symbol, and ma(i) = i(N +∆G)+∆G +N/2

is assumed in this paper. Note that the channel variation in one
OFDM symbol, which this model neglects, causes interference
between subcarriers and that its effect will be considered in
simulation results.

The demodulation uses the frequency-domain signal model
of (5) in the vector form as

Yl(i, n) = HH
l (i, n)X(i, n) + Nl(i, n) (8)

HH
l (i, n) = [Hl1(i, n), · · · ,HlNT

(i, n)] ,

XH(i, n) =
[
b∗1(i, n), · · · , b∗NT

(i, n)
]

where Hl(i, n) and X(i, n) are NT -by-1 vectors, and H and ∗

denote Hermitian transposition and complex conjugate, respec-
tively. Furthermore, an N -by-1 vector Yl(i) having Yl(i, n) as
its elements is given by

Yl(i) = XH(i)Hl(i) + N(i), (9)

YH
l (i) = [Y ∗

l (i, 1), · · · , Y ∗
l (i,N)] ,

NH(i) = [N∗
l (i, 1), · · · , N∗

l (i,N)]

XH(i) = [X1(i), · · · , XNT
(i)] ,

Xk(i) = diag [bk(i, 1), · · · , bk(i,N)] ,

HH
l (i) = [H∗

l1(i, 1), · · · ,H∗
l1(i,N), · · · ,

H∗
lNT

(i, 1), · · · ,H∗
lNT

(i,N)],

where Yl(i) and N(i) are N -by-1 vectors, Hl(i) is an NNT -
by-1 vector, X(i) is an NNT -by-N matrix, and diag[ ] denotes
a diagonal matrix consisting of its arguments.

On the other hand, the channel estimation uses the time-
domain signal model of (3) for more accurate estimation. It is
expressed in the vector form as

yl(m) = hH
l (m)x(m) + nl(m) (10)

hH
l (m) = [αl1,0(m∆t), · · ·αl1,D(m∆t), · · ·

αlNT ,0(m∆t), · · ·αlNT ,D(m∆t)]

xH(m) = [s∗1(m), · · · s∗1(m − D), · · ·
s∗NT

(m), · · · s∗NT
(m − D)]

where hl(m) and x(m) are (D + 1)NT -by-1 vectors.
For simplicity, the receiver antenna index l will be omitted

below.

III. ITERATIVE MAP RECEIVER

A. Receiver Framework

The receiver performs a joint processing of channel estima-
tion, demodulation and channel decoding. The whole receiver
process consists of the initialization and iteration steps.

The initialization step in Fig. 1 is performed only once.
Starting from the preamble symbols, the channel and the
symbol are estimated and detected alternately symbol-by-
symbol. It is performed recursively from the front to the end
of a packet. The symbol detection is based on the maximum
likelihood (ML) criteria, and produces the log likelihood ratio
(LLR) λ1(p) of every p-th coded bit. Given λ1(p), the LDPC
decoder maximizes a posteriori LLR λ3(p), and returns a
priori LLR λ2(p) = λ3(p) − λ1(p).



The iteration step in Fig. 1, which is referred to as the inner
loop, is performed after the initialization step. The channel for
the whole packet is estimated by using the hard decision of
λ3(p). Then, using the estimated channel and λ2(p) from the
LDPC decoder, the MAP demodulator maximizes λ3(p), and
produces λ1(p) = λ3(p)−λ2(p). After the inner loop iteration,
λ1(p) is passed to the LDPC decoder, and the LDPC decoder
maximizes λ3(p) again. The iteration between the inner loop
and the LDPC decoder is referred to as the outer loop. The
outer loop iteration repeats unless the LDPC-parity check
is passed or the iteration number exceeds a predetermined
number, and the inner loop iteration repeats unless the iteration
number exceeds another predetermined number.

B. MAP Symbol Detection of the inner loop

The inner loop iteration follows the EM algorithm in the
same way as [15], [16], and the detected symbol at the (r+1)-
th inner loop iteration, X(r+1), can be expressed as

E step : q[X(i, n)|X(r)] = (11)

−|Y (i, n) − Ĥ
H
(i, n)X(i, n)|2

σ2
− XH(i, n)ΣH(i, n)X(i, n)

σ2

M step : X(r+1)(i, n) =

arg max
X(i,n)

{
q[X(i, n)|X(r)] + log P [X(i, n)]

}
(12)

where Ĥ(i, n) and ΣH(i, n) are the average and the covariance
matrix of H(i, n), respectively, which are estimated by using
Y(i) and X(r). σ2 represents the average power of N(i, n).
In case of the receiver without the inner loop, the MAP
demodulation is performed after the channel estimation only
once in each outer loop iteration.

C. Channel Estimation

As mentioned in Section II, the channel estimation is
performed in the time domain. Ĥ(i, n) and ΣH(i, n) can be
obtained from the mean ĥ(m) and the covariance matrix P(m)
of the estimation of h(m). Note that P(m) is normalized by
the average noise power σ2 for notation simplicity. In order
to adaptively track the fast fading channel, the initialization
step uses the RLS algorithm in the same way as [15], and
the iteration step employs the new proposed channel estimator
derived in Section IV.
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Fig. 1. Structure of the iterative MAP receiver

IV. DERIVATION OF Smoothing AND Removing FOR THE

RLS ALGORITHM

In order to investigate the optimal channel estimation algo-
rithm for the iterative MAP receiver, this section discusses it
from the factor graph viewpoint.

A. Factor Graph Presentation of the inner loop

The factor graph is a bipartite graph consisting of local func-
tions and their arguments called variables. In Figs. 2-3, black
squares and white circles symbolize the local functions and
the variables respectively in the same way as [10]. A global
function of variables can be represented by a factor graph,
and can be calculated via the message-passing algorithm on
the factor graph. The basic rule of the local message passing
is as follows [10], [11]: Each message conveys a conditional
probability density function of each variable. The out-going
message on an edge from a node is generated from the in-
coming messages on all the other edges to the node. Messages
in both directions of all edges need to be calculated every
iteration.

Fig. 2 shows the factor graph of the system model where
the variables correspond to the channel and the symbol
information, and the local functions correspond to the relations
between them. The transmitted symbols and the channel infor-
mation at the i-th OFDM symbol are rewritten as Xi = X(i)
and Hi = H(i), respectively. The local function f(Hi, Hi+1)
represents the relation between the channels at neighboring
OFDM symbols, which is equivalent to the random walk
model in the case of RLS. Furthermore, the local function,
gi(Hi, Xi), represents the relation of (9) at the i-th OFDM
symbol.

Fig. 3 shows all the local messaging passings around the
node Hi. The arrows from the transmitted symbols and the
channels are messages, which are probability distribution func-
tions, such as the likelihood of symbols, and the distribution
of channels, respectively. Fig. 3 (a) and (b) correspond to the
original, and the opposite-directional RLS channel estimations,
respectively. From these two types of message passings, the
channel estimation using all detected signals is derived, and
this modification is referred to as smoothing.

The important finding from the message passing algorithm
is in Fig. 3(c), which indicates that the channel for the i-
th OFDM symbol detection should be estimated only from
the channel of the neighboring symbols without the direct
contribution from the i-th OFDM symbol. Then, this is re-
ferred to as removing in this paper. RLS with smoothing,
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Fig. 2. Factor graph representation of channel and transmitted symbols (RLS)
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Fig. 3. Local message passings. (a) RLS, (b) smoothing, (c) removing

and RLS with smoothing and removing are referred to as S-
RLS and SR-RLS respectively. By taking the meanings of
smoothing and removing, S-RLS and SR-RLS will be derived
in the following subsections. Since the passing of the exact
soft messages for both symbols and channels requires high
computational complexity, the messages of the symbols are
approximated as the symbols having the maximum probability,
and the distribution of the channel is approximated as the
Gaussian distribution using the mean and the covariance.

B. Derivation of RLS algorithm

As a reference, this subsection derives the original RLS
algorithm shown in Fig. 3. Considering the solution of the
normal equation that minimizes the mean square errors, ĥ(m)
and P(m) of the RLS estimation are given by

ĥ(m) = R−1(m)V(m), P(m) = R−1(m), (13)

R(m) =
m∑

m′=0

λ|m−m′|x(m′)xH(m′), (14)

V(m) =
m∑

m′=0

λ|m−m′|x(m′)y∗(m′). (15)

where λ (0 < λ ≤ 1) is the forgetting factor. By applying the
matrix inverse lemma to (13), the recursive formula of P(m)
can be written as

P(m) =
[
λR(m − 1) + x(m)xH(m)

]−1

= λ−1
[
P(m − 1) − K(m)xH(m)P(m − 1)

]
, (16)

K(m) = P(m − 1)x(m)
[
xH(m)P(m − 1)x(m) + λ

]−1
.

(17)

Then, substituting (16) into (13) yields

ĥ(m) = P(m) [λV(m − 1) + x(m)y∗(m)]

= ĥ(m − 1) + K(m)
[
y∗(m) − xH(m)ĥ(m − 1)

]
. (18)

(16)-(18) are the RLS algorithm procedures, which are recur-
sively performed from m = 0 to Nm − 1.

C. Derivation of S-RLS

The S-RLS algorithm can be derived in the similar way
to the RLS algorithm. First, ĥs(m) and Ps(m) of the S-RLS
estimation are defined as

ĥs(m) = R−1
s (m)Vs(m), Ps(m) = R−1

s (m), (19)

Rs(m) =
Nm−1∑
m′=0

λ|m−m′|x(m′)xH(m′), (20)

Vs(m) =
Nm−1∑
m′=0

λ|m−m′|x(m′)y∗(m′). (21)

Applying the matrix inverse lemma to (19) results in

Ps(m + 1) =
[
λR(m) + R′(m)

]−1

= λ−1P(m) − λ−2P(m)
[
λ−1I + R(m)R′−1(m)

]−1
(22)

where R′(m) = Rs(m + 1) − λR(m), and I is an identity
matrix. Similarly

Ps(m) =
[
R(m) + λR′(m)

]−1

= P(m) − P(m)
[
I + λ−1R(m)R′−1(m)

]−1
. (23)

On the other hand, ĥs(m) can be obtained from (19)-(21) as

ĥs(m) =
[
λRs(m + 1) + (1 − λ2)R(m)

]−1

× [
λVs(m + 1) + (1 − λ2)V(m)

]
= λ

[
λI + (1 − λ2)Ps(m + 1)P−1(m)

]−1
ĥs(m + 1)

+(1 − λ2)
[
λP(m)P−1

s (m + 1) + (1 − λ2)I
]−1

ĥ(m). (24)

From the definition of R′(m), the following equation holds:

P(m)P−1
s (m + 1) = R−1(m)R′(m) + λI. (25)

Hence, using (25), the calculations of (22)-(24) require
R′(m)R−1(m) or R−1(m)R′(m). In order to reduce the
computational complexity, we use the approximation that
R′(m)R−1(m) = R−1(m)R′(m) = I. This is reasonable
because both R′(m) and R(m) have information on the m-th
symbol with the maximum weight and on other symbols with
exponentially decreasing weight. Then, (22) and (23) can be
respectively rewritten as

Ps(m + 1) = λ−1P(m) − λ−2P(m)(λ−1 + 1)−1, (26)

Ps(m) = P(m) − P(m)(1 + λ−1)−1. (27)

From (26) and (27),

Ps(m) = P(m) + λ2
[
Ps(m + 1) − λ−1P(m)

]
. (28)

Furthermore, from (24) and (25), ĥs(m) can be rewritten as

ĥs(m) = ĥ(m) + λ
[
ĥs(m + 1) − ĥ(m)

]
. (29)

The S-RLS algorithm performs (28) and (29) recursively from
m = Nm − 2 to 0 with ĥs(Nm − 1) = ĥ(Nm − 1) and
Ps(Nm − 1) = P(Nm − 1) after the RLS calculation.



TABLE I

COMPUTATIONAL COMPLEXITY

complex addition complex multiplication
RLS 2Nm(NT D)2 3Nm(NT D)2

S-RLS 4Nm(NT D)2 4Nm(NT D)2

SR-RLS 6Nm(NT D)2 6Nm(NT D)2

D. Derivation of SR-RLS algorithm

The SR-RLS algorithm can be also derived in the similar
way. ĥr(ma) and Pr(ma) of the SR-RLS estimation for the
i-th OFDM symbol are defined as

ĥr(ma) = R−1
r (ma)Vr(ma), Pr(ma) = R−1

r (ma) (30)

Rr(ma) = Rs(ma) −
mt∑

m′=mh

λ|ma−m′|x(m′)xH(m′), (31)

Vr(ma) = Vs(ma) −
mt∑

m′=mh

λ|ma−m′|x(m′)y∗(m′). (32)

where mh = mh(i) = i(N +∆G), mt = mt(i) = (i+1)(N +
∆G) − 1, ma = ma(i) for the estimation at the i-th OFDM
symbol, and i is omitted for notation simplicity. For a recursive
calculation, let us introduce the following definitions:

ĥma,mh,m = R−1
ma,mh,mVma,mh,m, (33)

Pma,mh,m = R−1
ma,mh,m, (34)

Rma,mh,m = Rma,mh,m−1 − λ|ma−m|xmxH
m, (35)

Vma,mh,m = Vma,mh,m−1 − λ|ma−m|xmy∗
m (36)

where xm = x(m), ym = y(m), and mh ≤ m ≤ mt.
Applying the matrix inverse lemma to (34) results in

Pma,mh,m = Pma,mh,m−1

−Pma,mh,m−1xmA−1
ma,mh,mxH

mPma,mh,m−1 (37)

Ama,mh,m = −λ|ma−m| + xH
mPma,mh,m−1xm. (38)

Then, ĥma,mh,m of (33) can be rewritten as

ĥma,mh,m = ĥma,mh,m−1

+A−1
ma,mh,mPma,mh,m−1xm

(
y∗

m − xH
mhma,mh,m−1

)
. (39)

The SR-RLS algorithm of (37)-(39) is performed after the
S-RLS processing. This is iterated from m = mh to mt with
ĥma;mh,mh−1 = ĥs(ma) and Pma;mh,mh−1 = Ps(ma). Then,
from the definition of (33)-(36), ĥma;mh,mt and Pma;mh,mt

are equal to ĥr(ma) and Pr(ma) of (30), respectively. This
process is performed every OFDM symbol.

E. Computational Complexity

Table I compares the computational complexity of the
channel estimation algorithms investigated in this paper. The
numbers in the table cells are the complexity per one receiver
antenna during one packet, which the algorithms with the
NT D taps require. As shown in this table, the complexity
of the SR-RLS is about two to three times larger than that of
the original RLS algorithm, and they are in the same order.

TABLE II

SIMULATION CONDITION

MIMO antennas (NT × NR) 2 × 2
Modulation QPSK (Gray mapping),

64 subcarriers OFDM
GI/OFDM symbol duration 16/80
Preamble length 1 OFDM symbol
Channel estimation 16 taps
RLS forgetting factor 0.99
Channel model 9-path Rayleigh (Jakes)

0.8 exponential decay
Inner (EM) iterations 4
Outer iterations 10
Channel coding half-rate LDPC
Information bits 2048 bits
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V. COMPUTER SIMULATION

A. Simulation Condition

The simulation conditions are summarized in Table II. The
channel model assumed that the maximum delay time is not
longer than GI. The normalized Doppler frequency fDTs

was used as a parameter where fD and Ts are the Doppler
frequency and the OFDM symbol duration, respectively. The
forgetting factor of the RLS algorithm was set equally to 0.99
in order to keep the numerical stability of the algorithm and
sufficient fading tracking ability. The numbers of inner and
outer iterations were set to 4 and 10 respectively, which have
been verified in [16].

In the simulation result graphs, ”ML” and ”MAP” indicate
the symbol detection criteria. Only the LDPC decoding is
iterated after the ML demodulation in the ”ML” case. The
receiver with and without the inner loop are denoted by ”inner”
and ”no inner” respectively. Channel estimation methods are
denoted by ”RLS”, ”S-RLS” or ”SR-RLS”.

B. Performance evaluation

Fig. 4 shows the effect of smoothing and removing on the
packet error rate (PER) performance with fDTs = 0.02. With
S-RLS or RLS, the inner loop between the channel estimation
and MAP demodulation degrades the PER performance by
roughly 1 or 2 dB at PER= 10−2, respectively compared to
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the MAP receiver without the inner loop. On the other hand,
the inner loop with SR-RLS improves the PER performance by
about 1 dB. This means that the improvement via smoothing
is not sufficient, and that the channel estimation for the inner
loop should use SR-RLS as indicated by the message-passing
algorithm. The reason why removing is important is as follows.
If there is a direct interaction between the channel estimation
and the symbol detection at the same OFDM symbol, the
iteration of the MAP demodulation and the channel estimation
sometimes amplifies the noise through the inaccurate detection
and estimation. The SR-RLS channel estimator can avoid this
problem by Removing.

Fig. 5 shows the PER performance with fDTs = 0.03. Dif-
ferently from fDTs = 0.02, the PER performance degradation
through the inner loop occurs only in a low Eb/N0 region with
RLS. On the other hand, the inner loop with either SR-RLS or
S-RLS can reduce PER to less than 10−2. Furthermore, SR-
RLS achieves Eb/N0 gains of 4.2dB and 1.9dB at PER=10−1

over RLS and S-RLS, respectively. Since the fading tracking is
more necessary and the results are plotted in a higher Eb/N0

region than those with fDTs = 0.02, the noise amplification
problem is less serious with fDTs = 0.03. Hence, the trend
of the results is different from that of fDTs = 0.02, although
removing brings about a large improvement.

Note that in both fading conditions, the MAP symbol
detection receivers achieve much better performance than the
ML symbol detection receiver. There is 3 to 5 dB gain at
PER= 10−2 with fDTs = 0.02, and only the MAP receivers
can reduce PER to the practical level with fDTs = 0.03.

VI. CONCLUSION

This paper has proposed novel channel estimation methods
applied to the iterative MAP receiver for the LDPC-coded
MIMO-OFDM mobile communications. The receiver performs
the joint processing of the signal detection and the channel
estimation, which is based on the EM algorithm to perform the
MAP detection with practical complexity. By reconsidering the
joint processing from the viewpoint of the message-passing al-
gorithm in the factor graph, this paper has proposed smoothing

and removing for the channel estimation. Smoothing modifies
RLS so that it can use all detected signals for the channel
estimation, which is referred to as S-RLS, and removing
modifies S-RLS so that it removes the direct contribution of
detected signals at a targeted OFDM symbol, which is referred
to as SR-RLS. The recursive formulas of S-RLS and SR-RLS
have been derived theoretically. The computational complexity
of SR-RLS is two to three times higher than the original RLS
algorithm.

Computer simulations under fast multipath fading condi-
tions have showed that the MAP receiver using the proposed
SR-RLS channel estimator outperforms the ones using either
the S-RLS or RLS channel estimators. It has been also
demonstrated that removing is the most effective because it
can avoid the noise amplification that can occur in the joint
processing of the signal detection and the channel estimation.
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