Performance Analysis of MIMO-OFDM Systems using Indoor Wideband MIMO Channel Measurement Data

Tran Gia Khanh¹

Dao Nguyen Dung¹ Kei Sakaguchi¹ Kiyomichi Araki¹ Hiroshi Iwai² Tsutomu Sakata² Koichi Ogawa²

Content

Background
Purpose
Propagation Measurement
Analysis Method
Analysis Results
Conclusion

¹Tokyo Institute of Technology ²Matsushita Electric Industrial Co., Ltd.

Source : D. N. Dung et al, ``Measurements on area coverage of 5GHz band MIMO-OFDM system in residential home environment," The 16th PIMRC, Sep. 2005.

June 8th , 2006 – Tran Gia Khanh

Tokyo Institute of Technology

Purpose

MIMO Scheme

Linear Detection

>MMSE: Minimum Mean Square Error

Non-linear Detection

>VBLAST: Vertical Bell Labs Layered Space-Time

QRM-MLD: Maximum Likelihood Detection based on QR Decomposition and M-algorithm

•Beam-forming

SVD-MIMO: Singular Value Decomposition based MIMO

Measurement data are used to

 Verify performance improvement in residential environment as the benefit of MIMO

Compare performance of different MIMO schemes

MIMO Propagation Measurement

	Transmitter Measured area
MIMO Configuration	4(Tx) x 4(Rx)
Antenna Configuration	ULA spacing half a wavelength
Central Frequency	5.06 GHz
Bandwidth	20 MHz
Signal	IEEE802.11a modified standard
Spatial Sample	50,993 (2cm step)

Tokyo Institute of Technology

Analysis Method (Unknown CSI at Tx)

Simulation Condition

- Simulation in frequency domain
- Perfect synchronization
- Perfect channel estimation (CE)
- Quasi-static channel variation
- Equal power allocation

Throughput Calculation

$$T = m_{\rm t} \max_{l} [l(1 - PER)]$$

l : modulation level

Analysis Method (Known CSI at Tx)

- Simulation in frequency domain
- Perfect synchronization
- Perfect channel estimation (CE)
- Quasi-static channel variation
- Equal power allocation

June 8th , 2006 – Tran Gia Khanh

$$T = \sum_{i} \max_{l_i} [l_i (1 - PER)]$$

l: modulation level

Tokyo Institute of Technology

Simulation Parameters

Total Transmit Power	0 dBm
Noise power	-92 dBm (NF = 7dB)
System Configuration	SISO-OFDM
	4x4 MIMO-OFDM
OFDM Configuration	IEEE 802.11a standard
MIMO Scheme	MMSE, VBLAST (MMSE)
	QRM-MLD, SVD-MIMO
Modulation Scheme	BPSK, QPSK
(Adaptive Modulation)	16QAM, 64QAM
Packet Length	60 bytes
Spatial Sample	50,993

SNR & Spatial Correlation Distribution

- SNR decreases as far from the Tx
 - Free space path loss
 - Shadowing
 - Penetration loss
- Spatial correlation is high even in NLOS environment
 - > Wooden house is not a richly scattering environment

Throughput Distribution

Average Throughput Performance

- Scheme which does not require CSI at Tx:
 - Throughput performance improvement of MIMO with high SNR
 - QRM-MLD shows best performance
 - Performance degradation of MMSE to SISO in low SNR area
- If CSI is available at Tx, SVD-MIMO is superior to the other schemes

1% Outage Throughput Performance

- Small different in average and outage performance of QRM-MLD and SVD-MIMO implies reliable schemes
- Large different in average and outage performance of MMSE implies the sensitiveness to channel variation

Conclusion

- Improvement in throughput performance of MIMO in high SNR region.
- MIMO performance degradation in low SNR region.
- In case CSI not available at Tx, QRM-MLD can be seen as a candidate for high throughput scheme.
- SVD-MIMO performs as the optimal scheme with high throughput and reliability.

Future work

- Consider the effect of feedback delay on the performance of SVD-MIMO.
- Consider the effect of channel estimation error on performance of MIMO schemes.

Thank you for your attention!