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Abstract— This paper proposes a suboptimal maximum like-
lihood detection (MLD) algorithm for multiple-input multiple-
output (MIMO) communications. The proposed algorithm re-
gards transmitted signals as continuous variables in the same
way as a common method for the discrete optimization problem,
and then searches candidates of the transmitted signals in the
direction of a modified gradient vector of the metric. The vector
enhances components in the gradient that are likely to cause the
noise enhancement from which the zero-forcing (ZF) or minimum
mean square error (MMSE) algorithms suffer. This method sets
the initial guess to the solution by the ZF or MMSE algorithms,
which can be recursively calculated. Also, the proposed algorithm
requires the same complexity order as that of the ZF algorithm.
Computer simulations demonstrate that it is superior in BER
performance to conventional suboptimal algorithms of which
complexity order is equal to that of ZF.

I. INTRODUCTION

In the recent wireless mobile communications, the demand
for high data-rate transmission has increased rapidly. The
multiple-input multiple-output (MIMO) is one of the most
promising techniques to increase the data-rate and system
capacity, because it can effectively take advantage of the
random fading [1].

The optimal signal detection for the MIMO system is the
maximum likelihood detection (MLD), which can achieve the
minimum bit error rate (BER) [2]-[3]. However, MLD requires
a prohibitively large amount of computational complexity that
exponentially increases with both the number of data streams
and that of constellations. Therefore, suboptimal detection
algorithms that can reduce the complexity are required. The
zero-forcing (ZF) algorithm needs a very small amount of
complexity but exhibits poor BER performance owing to the
noise enhancement. The minimum mean square error (MMSE)
algorithm can alleviate this degradation to a certain extent but
cannot achieve sufficient BER performance.

To cope with this problem, the sphere-decoding applies
the QR decomposition (QRD) to a channel matrix and then
attempts to reduce the search space by searching candidates
that lie within a certain radius [4]. Since the detection or-
dering affects performance of such QRD-based algorithms,
ordering-QRD employs a detection ordering method on the
MMSE criterion and applies it to the decision feedback signal
detection using QRD [5]. As another QRD-based algorithm,
the combination of the QRD-based detection and the M-
algorithm has been proposed in [6]. A major problem for these
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algorithms is that a large number of candidates still need to
be searched in order to maintain sufficient BER performance,
especially for coded systems.

Another approach introduces the linear detection into MLD.
ZF-MLD sets the search space to signal candidates that differ
the initially detected signals by ZF in only one symbol [7].
Another application of the linear detection is to combine the
MMSE detection and MLD according to the estimated signal
to interference plus noise ratio (SINR) [8]. These methods,
however, cannot exploit all of the available diversity because
the linear detection uses a degree of freedom to suppress
undesired signals. Therefore, the use of the linear detection
should be limited for only determining the initial guess.
Following this strategy, the sphere-projection algorithm sets
the initial guess to the solution by ZF and extends the search
space in a direction of the dominant noise enhancement [9].
Since it needs the eigenvalue decomposition to determine the
direction, it requires a large amount of complexity.

This paper proposes a new suboptimal algorithm for the
MIMO signal detection that limits the use of the linear
detection without the eigenvalue decomposition. The proposed
algorithm sets the initial guess to the solution of ZF or MMSE
and then searches signal candidates in the direction of a
modified gradient vector of the metric, which can reduce the
search space. Also, the proposed algorithm outperforms the
conventional ones of which complexity order is equal to that
of ZF.
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II. SYSTEM MODEL

Fig. 1 shows a MIMO system with NT transmit antennas
and NR receive antennas. The channel is assumed to be a time-
invariant flat fading, and let hlk denote the impulse response
between the l-th (1 ≤ l ≤ NR) receive antenna and the k-th
(1 ≤ k ≤ NT ) transmit antenna. Also, let T and sk(i) be the
symbol duration and the transmitted signal from k-th transmit
antenna at discrete time iT . Thus, the signal received by the
l-th receive antenna at time iT , yl(i), can be expressed as

yl(i) =
NT∑
k=1

hlksk(i) + nl(i), (1)

where nl(i) is an additive white Gaussian noise at the l-th
receive antenna. nl(i) is statistically independent with respect
to indices i and l, which is given by

〈n∗
l1(i1)nl2(i2)〉 = σ2

nδl1l2δi1i2 . (2)

σ2
n is the average power of the noise, and 〈 〉 and ∗ denote the

ensemble average and complex conjugation, respectively.
For simplicity, (1) is rewritten in a vector form as

y(i) = Hs(i) + n(i), (3)

where the NR-by-1 received signal vector y(i), the NR-by-NT

impulse response matrix H, the NT -by-1 transmitted signal
vector s(i), and the NR-by-1 noise vector n(i) are defined as

yH(i) =
[
y∗
1(i) y∗

2(i) · · · y∗
NR

(i)
]
, (4)

HH =
[
h1 h2 · · · hNR

]
, (5)

hH
l =

[
hl1 hl2 · · · hlNT

]
, (6)

sH(i) =
[
s∗1(i) s∗2(i) · · · s∗NT

(i)
]
, (7)

nH(i) =
[
n∗

1(i) n∗
2(i) · · · n∗

NR
(i)

]
. (8)

hl is an NT -by-1 vector and the superscript H denotes Hermi-
tian transposition.

The channel estimator in Fig. 1 performs channel estima-
tion by using both training signals and yl(i), and provides
estimates of the channel impulse responses for the signal
detector. The detector performs signal detection of s(i), which
will be detailed below. From now on, the ideal channel
estimation is assumed.

III. SIGNAL DETECTION

A. Maximum Likelihood Detection (MLD)

Let us consider MLD of s(i). The likelihood function
P [y(i)|H, s(i)] is derived from (2) and (3) as

P
[
y(i)|H, s(i)

]
=

1
(πσ2

n)NR
exp

[
− ‖ y(i) − Hs(i) ‖2

σ2
n

]
.

(9)

Since the maximization of P [y(i)|H, s(i)] is equivalent to the
minimization of ‖ y(i)−Hs(i) ‖2, MLD searches the candidate
of s(i) that minimizes a cost function L[s(i)] given by

L[s(i)] =‖ y(i) − Hs(i) ‖2 . (10)

MLD is the optimal detection and can achieve the best BER
performance. However, its computational complexity grows
exponentially with the number of transmit antennas NT , and
that of constellations M . This is because the complexity is
proportional to the number of signal candidates, which also
increases exponentially with NT and M .

B. Proposed Algorithm

1) Discrete Optimization Problem: MLD can be classified
as a discrete optimization problem that requires a large amount
of complexity, that is NP-hard. One general method for the
solution of this problem is to relax the discrete constraint
on the required parameters so that they can be regarded as
continuous variables and then to quantize the solution of
the resultant continuous optimization problem [10]-[11]. The
proposed algorithm is based on this idea and will be explained
below.

First, s(i) in the cost function of (10) is replaced by an
NT -by-1 complex vector x that has continuous variable as its
elements, which results in

L(x) =‖ y(i) − Hx ‖2 . (11)

Partially differentiating (11) with respect to x∗ obtains a
gradient vector as

∂L(x)
∂x∗

= −HHy(i) + HHHx

= −HH[
y(i) − Hx

]
. (12)

Let x̂ denote x that minimizes L(x). As the minimum norm
solution, x̂ is given by

x̂ = H+y(i), (13)

where H+ denotes the pseudoinverse of H.
When NR ≥ NT and rank(H) = NT , H+ is expressed as

[12]

H+ =
(
HHH

)−1
HH, (14)

and x̂ is then written as

x̂ =
(
HHH

)−1
HHy(i). (15)

Quantizing x̂ of (15) results in the solution by ZF.
When HHH is a singular matrix, H+ can be numerically

obtained as

H+ = lim
δ′→+0

(
HHH + δ

′
INT

)−1
HH, (16)

where INT
is the NT -by-NT identity matrix. Fixing δ

′
at σ2

n

and substituting the resultant into (13) yields

x̂ = PHHy(i), (17)

P =
(
HHH + σ2

nINT

)−1
(18)

where P is an NT -by-NT Hermite matrix.
Also quantizing x̂ of (17) leads to the solution by the MMSE

algorithm. The MMSE algorithm can partially alleviate the
noise enhancement from which the ZF algorithm suffers but



cannot achieve sufficient BER performance. The reason is that
MMSE, which is considered as the linear detection as well as
ZF, uses the degree of freedom to suppress undesired signal
and thus cannot exploit all of the available diversity.

2) Noise Enhancement: To improve the performance of the
MMSE algorithm, x̂ of (17) is analyzed. First, substituting (3)
into (17) yields

x̂ = s(i) − σ2
nPs(i) + PHHn(i). (19)

Thus the autocorrelation matrix of x̂ − s(i) is given by〈
[x̂ − s(i)][x̂ − s(i)]H

〉
= σ4

nP2 + σ2
nPHHHP, (20)

where 〈s(i)sH(i)〉 = INT
, 〈n(i)nH(i)〉 = σ2

nINR
, and the

property that s(i) and n(i) are statistically independent of each
other were used.

The first and second terms of (20), of which average power
are in proportional to σ4

n and σ2
n, come from the second and

third terms of (19), respectively. With σ2
n � 1, the second

term of (19) can be neglected. Thus, we focus on the third
term of (19) below.

To analyze the dominant term, the singular value decompo-
sition (SVD) is applied to H, which results in

H = UΣVH. (21)

U and V are NR-by-NR and NT -by-NT unitary matrices,
which can be expressed as

U =
[
u1 u2 · · · uNR

]
, (22)

V =
[
v1 v2 · · · vNT

]
, (23)

where ul and vk are NR-by-1 and NT -by-1 vectors, respec-
tively.

Σ in (21) is an NR-by-NT matrix. With rank(H) = W (≤
min(NT , NR)), Σ is given by

Σ =
[

D OW,NT −W

ONR−W,W ONR−W,NT −W

]
, (24)

D = diag
[
λ

1/2
1 λ

1/2
2 · · · λ

1/2
W

]
, (25)

where Ol,k is an l-by-k null matrix. D is a W -by-W diagonal
matrix and its elements, λ

1/2
w (1 ≤ w ≤ W ) are the singular

values of H and 0 < λ
1/2
1 ≤ λ

1/2
2 · · · ≤ λ

1/2
W .

Substituting (21) into P and PHHn(i) yields

P = V
(
ΣHΣ + σ2

nINT

)−1
VH, (26)

PHHn(i) = V
(
ΣHΣ + σ2

nINT

)−1
ΣHUHn(i)

=
W∑

w=1

vwλ1/2
w

(
λw + σ2

n

)−1[
uH

wn(i)
]
, (27)

where (22)-(25) were used.
When σ2

n is negligible, λ
1/2
w

(
λw + σ2

n

)−1 � λ
−1/2
w . In

addition, as λ
1/2
w becomes very small, the noise is enhanced in

the direction of vw. In this case, decision errors are likely to
occur in the direction of vw and search for signal candidates
in this direction with x̂ as a start point is promising, which is
pointed out by [9].

3) Gradient-based Method: The proposed algorithm that
follows the above strategy is given by

x̃(r) = x̂ + µrg(i), (28)

g(i) = −Pq ∂L
(
x
)

∂x∗

∣∣∣∣∣
x=ŝ(i,0)

, (29)

ŝ(i, 0) = Dec
[
x̂
]
, (30)

ŝ(i, r) = Dec
[
x̃(r)

]
, (31)

where r(≥ 1) is a signal candidate index and q is a non-
negative integer. Also, Dec[ ] denotes the quantization, ŝ(i, 0)
represents a hard decision of x̂, and µr is a complex number.

g(i) of (29) enhances vw’s in the gradient vector that
correspond to very small singular values. This is evident from

g(i) =
W∑

w=1

vwλ1/2
w

(
λw + σ2

n

)−q
{

uH
w

[
y(i) − Hŝ(i, 0)

]}
,

(32)

which is obtained in the same way as (27).
µr is determined as follows. Let x̂k and a(r) denote the

k-th element of x̂ and a symbol that differs the k-th element
of ŝ(i, 0), respectively. µr is given by

µr =
[
a(r) − x̂k

]
/g(i)k (33)

where g(i)k is the k-th element of g(i). With µr of (33), the k-
th element of x̃(r) becomes equal to a(r). This means that the
k-th element of a hard decision of x̃(r) is changed into a(r).
Since the number of a(r) for each k is M − 1, the number of
µr is equivalent to the number of generated signal candidates
(M − 1)NT . Let a set C be

{
ŝ(i, r′)|0 ≤ r′ ≤ (M − 1)NT

}
.

The finally detected signal ŝ(i) is selected as the candidate of
C that minimizes the cost function, which is given by

ŝ(i) = arg min
ŝ(i,r′)

‖ y(i) − Hŝ(i, r′) ‖2 . (34)

4) Recursive Form of Initial Guess: To reduce the com-
plexity furthermore, the proposed algorithm calculates x̂ in
the following recursive form. First, HHH is rewritten by using
(5) as

HHH =
NR∑
l=1

hlhH
l . (35)

Similarly, HHy(i) is given by

HHy(i) =
NR∑
l=1

hlyl(i). (36)

Therefore

(
HHH + αI

)−1
HHy(i) =

( NR∑
l=1

hlhH
l + αINT

)−1
NR∑
l=1

hlyl(i).

(37)

α =

{
0 for ZF

σ2
n for MMSE

(38)



Applying the matrix inversion lemma [12] to (37) yields an
RLS-like recursive form as

k(l) =
P(l − 1)hl

1 + hH
l P(l − 1)hl

, (39)

e(l) = y∗
l (i) − zH(l − 1)hl, (40)

z(l) = z(l − 1) + k(l)e∗(l), (41)

P(l) = P(l − 1) − k(l)hH
l P(l − 1), (42)

where k(l) and P(l) are an NT -by-1 vector and an NT -by-NT

matrix, respectively. The NT -by-1 vector z(l) is defined as

z(l) =
( l∑

l′=1

hl′hH
l′ + αINT

)−1 l∑
l′=1

hl′yl′(i), (43)

where z(NR) = x̂.
The initial conditions for the recursion are

P(0) = δ−1INT
, (44)

δ =

{
ε for ZF

σ2
n for MMSE

, (45)

x(0) = 0NT
, (46)

where 0NT
is an NT -by-1 null vector and ε is a small positive

constant.

IV. COMPUTATIONAL COMPLEXITY

Let us evaluate the computational complexity of the pro-
posed algorithm. For comparison, the complexities of ZF,
ZF-MLD [7], Ordering QRD [5], and MLD algorithms are
calculated. Note that the complexity of the proposed algorithm
without the recursive form of the initial guess (39)-(42) was
evaluated for a strict comparison.

Fig. 2(a) and (b) show the number of complex multipli-
cations and additions which the proposed and conventional
algorithms requires with NT = NR and QPSK modulation.
It can be seen that MLD requires the largest amount of
complexity while ZF needs the smallest complexity. The ZF-
MLD and ordering QRD algorithms require much smaller
computational complexity than that of ML, but their complex-
ities are still larger than that of ZF algorithm. In both figures,
the computational complexity of the proposed algorithm is
less than that of the ordering QRD algorithm and almost the
same as that of the ZF-MLD. Note that the complexity of
the proposed algorithm can be reduced furthermore when the
recursive form (39)-(42) is used.

V. COMPUTER SIMULATION

A. Simulation Condition

Computer simulations were conducted to clarify the per-
formance of the proposed low-complexity algorithm on the
time-invariant and uncorrelated Rayleigh flat fading channel.
The simulation parameters are listed in Table I.
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Fig. 2 Computational complexity

TABLE I SIMULATION PARAMETERS

Modulation QPSK, 16QAM
Number of transmit antennas, NT 4
Number of receive antennas, NR 4
Channel Rayleigh flat fading channel

B. Simulation Results

Fig. 3 shows the BER performance of the proposed al-
gorithm with q as a parameter. As q increases, the BER
performance improves. This is because the components in the
gradient vector that cause the noise enhancement are more
enhanced and the search in the direction of the modified
gradient vector is more likely to find the correct signal. Since
the improvement is saturated with q = 3, q is set equal to 3
below.

Fig. 4 shows the BER performance of the proposed and
conventional algorithms with QPSK modulation. The perfor-
mance of MLD can be considered as the lower bound. The
proposed algorithm is superior in the BER performance to the
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conventional ones of which the complexity order is the same
as that of ZF. The difference between MLD and the proposed
algorithm at BER = 10−3 is about 1 dB in Eb/N0.

The BER performance of the proposed and conventional
algorithms with 16QAM modulation scheme are also shown
in Fig. 5. The proposed algorithm also outperforms the con-
ventional ones.

VI. CONCLUSION

This paper proposed a suboptimal MIMO MLD algorithm,
which is based on a common method for the discrete optimiza-
tion problem. After regarding transmitted signals as continuous
variables, the proposed algorithm sets the initial guess to the
solution by the ZF or MMSE algorithms and searches signal
candidates in the direction of a modified gradient vector of
the metric. The computational complexity of the proposed
algorithm is less than that of the ordering QRD [5] and
almost the same as that of ZF-MLD [7]. Computer simulation
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demonstrated that the proposed algorithm is superior to the
conventional low-complexity ones in BER performance.
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