Suboptimal Maximum Likelihood Detection Using Gradient-based Algorithm for MIMO Channels

Thet Htun Khine, Kazuhiko Fukawa, and Hiroshi Suzuki
Tokyo Institute of Technology
Tokyo, Japan
Background

MIMO signal detection

- ZF
- MMSE
- MLD

Optimal detection
Very large complexity

Suboptimal MLD algorithms

Ordering QRD

Proposed algorithm

Approach from MLD

Approach from Linear detection

Linear detections
Noise enhancement problem

The proposed algorithm can improve performance with low complexity.
Conventional Detection Algorithms

Approach from MLD

Ordering QRD algorithm

- QRD: \(\mathbf{H} = \mathbf{QR} \)
 - Unitary matrix
 - Upper triangular matrix
- Feedback detection
 \(\mathbf{Q}^H \mathbf{y}(i) = \mathbf{Rs}(i) + \mathbf{Q}^H \mathbf{n}(i) \)
- Ordering of the channel matrix (based on MMSE)
 \(\mathbf{G} = \left(\mathbf{H}^H \mathbf{H} + \sigma_n^2 \mathbf{I} \right)^{-1} \mathbf{H}^H \)
 - Lower (\(\mathbf{GG}^H \)) \(_{ii} \) \(\Rightarrow \) Higher SNR

Approach from linear detection

ZF-MLD algorithm

- Initial detection of ZF
 \(\mathbf{s}_{ZF}(i) = \text{Dec}\left[\left(\mathbf{H}^H \mathbf{H} \right)^{-1} \mathbf{H}^H \mathbf{y}(i) \right] \)
- Searching similar vectors to \(\mathbf{s}_{ZF} \)
 \(\{ \mathbf{s}_{\text{near}} \} \): set of signal vectors that differ from \(\mathbf{s}_{ZF} \) only in one symbol.
- MLD execution
 \(\hat{\mathbf{s}}(i) = \arg \min_j \| \mathbf{y}(i) - \mathbf{Hs}_j \|^2 \)
 \(\mathbf{s}_j \in \{ \mathbf{s}_{\text{near}} \} \)

QRD and ordering H still needs high complexity.

Noise enhancement occurs & BER performance is still poor.
Proposed Algorithm

To reduce complexity
- approaches from linear detection (ZF/MMSE)

Without noise enhancement

With noise enhancement

To overcome noise enhancement
- search the signal candidates in the direction of noise enhancement
- search the signal candidate that minimizes the metric by gradient-based method

BPSK
NT = 2
Analysis of Noise Enhancement

SVD of channel matrix: $H = U \Sigma V^H$

Diagonal matrix:

$\Sigma = \begin{bmatrix} D & O_{W,N_T-W} \\ O_{N_R-W,W} & O_{N_R-W,N_T-W} \end{bmatrix}$

$D = \text{diag} [\lambda_1^{1/2}, \lambda_2^{1/2}, \ldots, \lambda_W^{1/2}]$,

$\text{rank}(H) = W(\leq \min(N_T, N_R))$

The noise term in MMSE detection:

$\left(H^H H + \sigma_n^2 I \right)^{-1} H^H n(i)$

$\approx \sum_{w=1}^{W} v_w \lambda_w^{-1/2} [u_w^H n(i)] \quad (\sigma_n^2 \approx 0)$

Direction of noise enhancement

The noise is enhanced in the direction of v_w with very small λ_w.
Gradient-based Algorithm

Calculate several values of μ_r

$0 \leq r \leq (M-1)N_T$

Next guess

$\tilde{x}(r) = \hat{x} + \mu_r g(i)$

Hard decision

$\hat{s}(i,r) = \text{Dec}[\tilde{x}(r)]$

Final stage

$\hat{s}(i) = \arg \min_{\hat{s}(i,r)} \| y(i) - H\hat{s}(i,r) \|^2$

$\mu_r = [a(r) - \hat{x}_k] / g(i)_k$

$a(r) = [\tilde{x}(r)]_k$

Initial guess by MMSE: \hat{x}

Gradient vector:

$g(i) = -Pq \frac{\partial L(x)}{\partial x^*} \bigg|_{x=\hat{s}(i,0)}$

$P = (H^H H + \sigma_n^2 I_{NT})^{-1}$

$L(x) = \| y(i) - Hx \|^2$

The finally detected signal that minimizes the metric is selected.
The Gradient Vector

Direction of the gradient vector

Searching for the next guess

The direction of the gradient vector vary with parameter q.

The next guess is obtained by initial guess and gradient vector.

Initial guess by MMSE

Next guess

$\tilde{x}(r) = \hat{x} + \mu_r g(i)$
The initial guess \hat{x} is given by MMSE.

$$\hat{x} = PH^Hy(i) \quad P = (H^HH + \sigma_n^2I_{NT})^{-1}$$

Its RLS-like recursive form that can reduce complexity.

Initial conditions:

$$P(0) = \sigma_n^{-2}I_{NT}, \quad x(0) = 0_{NT}$$

$$k(l) = \frac{P(l-1)h_l}{1 + h_l^HP(l-1)h_l} \quad z(l) = z(l-1) + k(l)e^*(l)$$

$$e(l) = y_l^*(i) - z^H(l-1)h_l \quad P(l) = P(l-1) - k(l)h_l^HP(l-1)$$

$$z(l) = \left(\sum_{l=1}^{NR} h_lh_l^H + \sigma_n^2I_{NT}\right)^{-1} \sum_{l=1}^{NR} h_ly_l(i)$$

The desired initial guess: $\hat{x} = z(N_R)$
The computational complexity of the proposed algorithm is less than that of the ordering QRD and almost same as that of ZF-MLD.
As q increases, the BER improves. BER improvement is saturated with $q = 3$.

The proposed algorithm is superior in BER performance to the conventional ones.
A suboptimal MIMO MLD algorithm, which uses gradient-based method, is proposed.

The proposed algorithm sets the initial guess to the solution by MMSE algorithm to reduce complexity.

Signal candidates are searched in the noise-enhanced direction by the gradient-based method to overcome noise enhancement problem.

The computational complexity of the proposed algorithm is less than that of ordering QRD and almost same as that of ZF-MLD.

The proposed algorithm is superior in BER performance to the conventional ones.
Thank You for Your Attention