Suboptimal Maximum Likelihood Detection Using Gradient-based Algorithm for MIMO Channels

> Thet Htun Khine, Kazuhiko Fukawa, and Hiroshi Suzuki Tokyo Institute of Technology Tokyo, Japan





# **Conventional Detection Algorithms**



Approach from MLD Ordering QRD algorithm

 $\mathbf{ORD: H} = \mathbf{QR}$ 

Unitary matrix Upper triangular matrix

• feedback detection  $\mathbf{Q}^{\mathrm{H}}\mathbf{y}(i) = \mathbf{Rs}(i) + \mathbf{Q}^{\mathrm{H}}\mathbf{n}(i)$ 

ordering of the channel matrix

(based on MMSE)  $\mathbf{G} = \left(\mathbf{H}^{\mathrm{H}}\mathbf{H} + \sigma_{n}^{2}\mathbf{I}\right)^{-1}\mathbf{H}^{\mathrm{H}}$ 

 $Lower(GG^{H})_{ii}$  Higher SNR

QRD and ordering H still needs high complexity.

Approach from linear detection ZF-MLD algorithm

Initial detection of ZF  $\mathbf{s}_{ZF}(i) = \operatorname{Dec}\left[\left(\mathbf{H}^{\mathrm{H}}\mathbf{H}\right)^{-1}\mathbf{H}^{\mathrm{H}}\mathbf{y}(i)\right]$ 

searching similar vectors to s<sub>ZF</sub>
 {s<sub>near</sub>}: set of signal vectors that differ from s<sub>ZF</sub> only in one symbol.

♦ MLD execution
 
$$\hat{\mathbf{s}}(i) = \arg\min_{j} \| \mathbf{y}(i) - \mathbf{H}\mathbf{s}_{j} \|^{2}$$
 $\mathbf{s}_{j} \in \{\mathbf{s}_{near}\}$ 

Noise enhancement occurs & BER performance is still poor.

## **Proposed Algorithm**



#### To overcome noise enhancement

 search the signal candidates in the direction of noise enhancement
 search the signal candidate that minimizes the metric by gradientbased method

#### **Analysis of Noise Enhancement**





The noise is enhanced in the direction of  $\mathbf{v}_w$  with very small  $\lambda_w$ .



The finally detected signal that minimizes the metric is selected.

#### **The Gradient Vector**





#### **Recursive Form of Initial Guess**



 $\bullet$  The initial guess  $\hat{\mathbf{x}}$  is given by MMSE.

$$\hat{\mathbf{x}} = \mathbf{P}\mathbf{H}^{\mathrm{H}}\mathbf{y}(i)$$
  $\mathbf{P} = \left(\mathbf{H}^{\mathrm{H}}\mathbf{H} + \sigma_{n}^{2}\mathbf{I}_{N_{T}}\right)^{-1}$ 

Its RLS-like recursive form that can reduce complexity.

Initial conditions: 
$$\mathbf{P}(0) = \sigma_n^{-2} \mathbf{I}_{N_T}, \mathbf{x}(0) = \mathbf{0}_{N_T}$$

$$\mathbf{k}(l) = \frac{\mathbf{P}(l-1)\mathbf{h}_l}{1+\mathbf{h}_l^{\mathrm{H}}\mathbf{P}(l-1)\mathbf{h}_l} \qquad \mathbf{z}(l) = \mathbf{z}(l-1) + \mathbf{k}(l)e^*(l)$$
$$e(l) = y_l^*(i) - \mathbf{z}^{\mathrm{H}}(l-1)\mathbf{h}_l \qquad \mathbf{P}(l) = \mathbf{P}(l-1) - \mathbf{k}(l)\mathbf{h}_l^{\mathrm{H}}\mathbf{P}(l-1)$$
$$\mathbf{z}(l) = \left(\sum_{l=1}^{N_R}\mathbf{h}_l\mathbf{h}_l^{\mathrm{H}} + \sigma_n^2\mathbf{I}_{N_T}\right)^{-1}\sum_{l=1}^{N_R}\mathbf{h}_l\mathbf{y}_l(i)$$

• The desired initial guess:  $\hat{\mathbf{x}} = \mathbf{z}(N_R)$ 

#### **Computational Complexity**

Tokyo Institute of Technology



10



The computational complexity of the proposed algorithm is less than that of the ordering QRD and almost same as that of ZF-MLD.

### **BER Performances**





### Conclusion



- A suboptimal MIMO MLD algorithm, which uses gradient-based method, is proposed.
- The proposed algorithm sets the initial guess to the solution by MMSE algorithm to reduce complexity.
- Signal candidates are searched in the noise-enhanced direction by the gradient-based method to overcome noise enhancement problem.
- The computational complexity of the proposed algorithm is less than that of ordering QRD and almost same as that of ZF-MLD.
- The proposed algorithm is superior in BER performance to the conventional ones.

#### **Thank You for Your Attention**