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Abstract—This paper proposes a maximum likelihood detec- Antenna 1
tion (MLD) method for the differential space-time block code Antenna 1 ?‘_‘fszl,‘ "
(DSTBC) in cooperation with blind linear prediction (BLP) of s(2k-1),-s*(2K) \\
fast frequency-flat fading channels. The method, which linearly N .
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and does not use decision-feedback nor require information on ©___ Antenna Ng
channel parameters such as the maximum Doppler frequency in S@K.SM2A) | p, o2k )
contrast to conventional ones. Computer simulations under a fast —

fading condition demonstrate that the proposed method with a
proper degree of polynomial approximation can be superior in Fig. 1 The system model
BER performance to a conventional method that estimates the

coefficients by the RLS algorithm using a training sequence.

Il. SYSTEM MODEL

A. Received signal
Alamouti's space-time block code (STBC) has attracted Fig. 1 shows the system model of DSTBC with two

much attention because it can achieve full spatial diversify emit antennas anti; receive antennas. L&t denote the
without bandwidth expansion by using two transmit antenn@gmpo| duration. The channel is assumed to be time-varying
[1]. However, STBC requires accurate channel eSt'mat'?Féquency-flat Rayleigh-fading, wher,(i) is a channel

for coherent detection, although it can hardly perform S“‘?thulse response between theth transmit antennap(= 1,
estimation under fast fading environments. In order to achiegse and thel-th receive antennal (= 1,..., Nz) at discrete

the spatial diversity without channel state information (CSljine ;7. The receiver for DSTBC [6] assumes tHag,(i) is

differential STBC (DSTBC) was proposed [2]. In a static chans,hstant during each STBC block (two symbols) as
nel, however, BER performance of DSTBC is approximately

3 dB worse than that of STBC with coherent detection. For hup(2k) = hip(2k — 1), 1)

improving the performance, some methods including multiplgzhere ; is a block index. Note that this assumption is used

symbol detection (MSD) were applied to the detection Qfgjow except the computer simulation section. It is also note-

DSTBC [3], [4]. Nevertheless, these schemes assume a tifgythy that it is not satisfied under very fast fading conditions,

invariant channel during each transmission block. which causes the receiver considerable intrablock interference
To cope with the fast fading, the methods of linear prediggj,

tion were applied to DSTBC in [5]-[8]. The linear prediction r,(;) represents the signal received by th¢h receive

scheme estimates a current complex envelope by using Hiftenna at discrete timi&, and a 2-by-1 received signal vector
past ones, and performs the maximume-likelihood sequengeg:) is defined as

estimation (MLSE) to find the sequence that maximizes the H . .

log likelihood function. However, this conventional scheme (k) = (i (2k=1) 17 (2K)), @)

needs information on both the maximum Doppler frequengyhere the superscript and* denote Hermitian transposition

and signal-to-noise ratio (SNR) in order to obtain the optimusnd complex conjugation, respectively. On the assumption of

prediction coefficients. Another conventional scheme estimat@$, r; (k) can be written as

the coefficients by the RLS algorithm using decision-feedback,

which may cause error propagation [9], [10]. ri(k) = D(k)hu (k) + m(k), ®)
For solving these problems, this paper proposes blind linesihere the 2-by-1 impulse response vedtdik) and the 2-by-1

prediction (BLP) for DSTBC that employs the method ofioise vectom,(k) are given by

Lagrange multipliers to determine the prediction coefficients Hog _ (1% *

by using neither the data of decision-feedback nor information :l (k) = (*”(%) hlzi%)) “)

on the channel parameters. ;' (k) = (n (2k—1) nj(2k)). )

I. INTRODUCTION



Here, n;(i) is an additive white Gaussian noise at discret®. Autoregressive (AR) process
time i7" with variances? and zero mean, and is statistically op, the assumption that,, (i) of (11) includesM dominant

independent with respect to receive antenna index paths,hy, (i) hasM dominant tones and then can be modeled
The 2-by-2 STBC symbol matriP(k) is defined as as an AR process of ordér. Considering this model and the
N . assumption of (1)h;,(2k) is expressed as
D"(k) = (si(k) s3(k)), (6) o
where the 2-by-1 transmitted symbol vectsygk) ands, (k) hip(2k) = Y i mhip[2(k — m)] + vy (2k), 12)
are given by m=1
wherec;,, ., is equal to an AR parameter multiplied byl, and
si(k) = (s*(2k—1) s*(2k)), (7) v, (2k) that represents residual propagation paths is assumed
S} (k) = (—s(2k) s(2k—1)). (8) to be a negligible white-noise process.

Next, let us consider Taylor series expansiomgfi2(k —
Here, s(i) represents a complex symbol 2F<-PSK modula- m)] that is given by
tion. s; (k) ands;(k), which are orthogonal to each other and oo
have unit lengths, correspond to transmitted signals at discrete hip[2( Z
time (2k — 1)T and 2kT, respectively. Note that the power of q=0
each transmitted symbol is fixed 19’2 in order to keep the
transmit power per symbol constant ().

h(q (2k), (13)

wherehl(;f)(%) is theg-th derivative ofh,,(2k) and is derived
from (11) as

B. DSTBC encoder and decoder hl(;f)(%) - (fDT)q{Zalp (j2m cos By, g) eI 4Tk COSGIp,d:|'

The DSTBC encoder ifrig. 1 performs differential encod- d

ing with the STBC format, which can be expressed as [2]

T — AV (k- 1) 4 Bl Evidently, i, (Qk:) is proportional to(fp7")? and exponen-
si(k) = A(k)si(k — 1) + B(k)s; (k — 1) tially decays ag increases. Let us assume tlhég)( k) with
= (A(k) B(k)) (k—1), © q > ¢q1 can be neglected. The integer is referred to as a
degree of polynomial approximation.

Substituting (13) into (12) and neglectihéz)(%) with ¢ >
¢ and the white noise;,(2k) yield

(14)

where the superscript denotes transposition. The complex
vector (A(k) B(k)) depends or2N, information bits and
satisfies the constraint that the elementssdf) should be

a 2N¢-PSK constellation symbol. Note tha (0) can be o oo M @
arbitrarily set, e.g. tq1/v2 1/v/2). hip(2k) =Y { > cipm(—2m)*(q)) }hlp (2k).  (15)
The DSTBC decoder ifrig. 1 detects(A(k) B(k)) from 9=0 m=1

D(k—1) and D(k) which the symbol detector provides asthe conditions for anyz(Q)(Qk) 0 < q < ¢, to satisfy (15)
estimated values dD(k—1) andD(k). The detection can be are given by

expressed as

(A(k) B(k) = 8[(k)D" (k — 1), (10) 2 cipm =1 (16)

~ A M
where A(k), B(k), and§; (k) are estimated values of(k), Z Clpn(—2m)T =0, ¢ >1, 1<q<q. (17)
B(k), ands; (k), respectively. The derivation of (10) uses the P ’ - 00T
property thatD(k) is an unitary matrix. Fron{A(k) B(k)),
the 2N, transmitted information bits can be determined.

m=1
Since (16) and (17) are independent of indi¢esdp, we

assume thaty, ,, = ¢, for all [ and p. Accordingly, (12),

(16), and (17) can be rewritten in simple vector forms as
I1l. CHANNEL MODEL

A. Multipath propagation hi(k) = emhi(k = m) +vi(k), (18)
. . . . m=1

Under the multipath propagatioh,, (i) can be written as by = 1, (19)

hlp Zal dej(Qﬂ-fDTCOS GZP d)l (11) CHbq = 07 Q1 Z 17 1 S q S Qh (20)

d where theM-by-1 prediction coefficient vectar and theM -

where a;, 4 and 6,4 represent a complex envelope an®y-1 vectorb, are defined as
incident angle of thel-th propagation path, respectivel is cH— (01 Cy - cM), 1)

the maximum Doppler frequency anfgh 7" is generally much
less than 1. bl = ((—2)7 (—4)? .-+ (=2M)7), 0<q¢<q. (22



v,(k) is the 2-by-1 process noise vector having(2k) as its  DnlK)

elements. '11t-t* X
I’1(k) } st recelve an en ” ”2 } Bn(k) - (D()}
IV. SymBoL DETECTION | ’f’- i)g -
A. MLSE 3 L] Linear | Jh k) !

The symbol detector ifrig. 1 performs MLSE on the basis I
of the linear prediction. The log likelihood function is derived  ryk |

from (3) as follows: > S lI-IP>P
First, multiplying the both hand sides of (3) Wy~ (k) L ,| Linear | Jf |
results in | [Predictorj — !
DY (k)ri(k) = hy(k) + D~ (k)my (k). [2<) R o ’
. . . . . . ) | Ngth receive antenna i
SinceD(k) is an unitary matrix, this can be rewritten as N ,é &I+
D™ (k)ry(k) = hy(k) + ny(k), (24) | tnear | o o |
. ) i Predictor }
where the 2-by-1 vectan, (k) is defnedas e '
S Y — DR (R (e - (a) Structure of symbol detector
Au(k) = DF(k)mu (). (25) ot
The autocorrelation matrix di;(k) is given by
()N} (k) = (mu(k)nf (k) = o7l (26) |
Where<-> denotes ensemble average dnslthe 2-by-2 identity |
matrix. It is also evident from (25) that;(k) is statistically (b) Structure of linear predictor

independent with respect to both time indéxand receive
antenna index. Therefore, the log likelihood function can be
expressed as [6]

Ngr Ngr
L=>"0(rls) ==Y ||Dj(k)ru(k) — hu(k)
=1

=1 k

Fig. 2 Symbol detector

2 outputs the resultant as the detected sigi@l). VA considers
sequences oD, (k) as those of states, and can effectively
A find the maximum likelihood sequence on a trellis diagram.
whereD,, (k) is a candidate oD(k) andh;(k) is an estimate In this case, the state at discrete tikT is expressed as
of the impulse response vectby(k). {sin(k—1),s51n(k —2),....,S1,(k — M)} where s;,,(k) is a

. . - candidate of; (k). Therefore, the numbers of states and state
B. Blind Ilnlear predlctlon _(B.LP) . transitions are( e>qual to?MNa and 22M4, respectivelyFig. 3
1) Applying linear prediction to MLSELet us discuss the ghows the trellis diagram for BPSKV( = 1) with M = 2.

estimation ofh; (k) by linear prediction. Considering (18) and 2y prediction coefficientsConventional methods determine

» (27)

(24), hui(k) can be approximated as the prediction coefficients by solving Yule-Walker equation
M [7] or using the RLS algorithm [9] which require information

hy (k) = Z emDH (k= m)r(k —m). (28) on fpT and SNR, or detected symbols. The proposed blind

m=1 method can determine the coefficients without detected and

Substituting (28) into (27) yields the branch metric given byraining symbols and any channel information as follows:

N ) A 2-by-1 prediction error vectog, (k) is defined as
R

M
' e (k) =D (k)ry(k) = Y emDY(k = m)r(k —m)

M
DE(k)ri(k) = )~ Dl (k—m)ry(k—m)

(29)
M M
A block diagram of the symbol detector using this branch — {hl(/ﬂ)_zcmhl(/{_m)]+[ﬁl(k)_zcmﬁl(k_m)}
metric is shown inFig. 2 (a). For alll, r;(k) is multiplied by m=1 m=1
DM(k) which the Viterbi algorithm (VA) processor provides. (30)

The resultant is fed into the linear predictor that generate®nen p (k) = D(k) for all k, the branch metric of (29) is
h;(k) following (28) and of which structure is depicted ingiven byn ’

Fig. 2 (b). SquaringD! (k)r,(k) — h;(k) and combining the Nr )
resultants with respect(tlgyit(alg the t()r;nch metric, which is Bu(k) = _Z Hel(k)H : (31)
passed into the VA processor. =1

The VA processor searches the sequenceDpfk) that Since elgc) can be considered a virtual noise, minimizing
maximizes the log likelihood function of (27) by VA, and(||e(k)||") results in the optimal BER performance. To de-



S(2K),5(2k-1),5(2k-2),5(2k-3)
4111 @
4,111
1,11
41,11

-1,1,-1,-1
-1,1,-11
-1,1,1,-1
-1,1,1,1

1,-1,-1,-1
1,-1,-1,1
1,-1,1,1
1,-1,1,1

1,1,-1,-1
1,1,-1,1
1,1,1,-1
1,111

128 symbols

Packet format
Constellation mapping BPSK, QPSK
Receive antennas 1 branch

Channel
foT

Fast flat Rayleigh fading
1x107%— 1x107*

TABLE Il Proper value of the degree of the polynomial
approximation ;) corresponding to prediction ordeh)

M CI1

2 1

3 1

4 1,2

WherE(Bql)iu = b'i—'_lbufl, tL,u=1,..., (Q1 + 1)

Note that the optimat does not depend on any channel
characteristics and varies accordingjtolt is also noteworthy
that the solution with\/ = 2 andg; = 1 is equivalent to linear

Fig. 3 Trellis diagram for BPSK with the prediction order ofrediction coefficients for SISO in [11].

2 (M = 2)

crease<||el(k)||2> as much as possible, the proposed method

V. COMPUTERSIMULATIONS
A, Simulation condition

forces the first term of (30) to be zero, and then minimizes A series of computer simulations was conducted to evaluate

the mean squared norm of the second term. This is beca[[%"e

the first term can be zero due to the property thdk) is a

performance of BLP. The simulation condition is summa-
rized in Table |. For comparison, the conventional methods,

deterministic process, whereas the second term cannot variiih solution of Yule-Walker equation using information on

due to the property thai; (k) is a stochastic process.
After forcing the first term to be zero(Hel(lc)||2> is
expressed as

M
(le(k)[|) =202 (1+ > few|). (32)
m=1
Minimizing (32) is equivalent to
M
Z ’cm‘Q = clc — min. (33)
m=1

SNR and fpT, and the RLS algorithm usingVrs training
symbols instead of detected ones, were also evaluated. Note
that the RLS algorithm using only detected symbols [9],
[10] is obviously inferior to that using the training in BER
performance, owing to the error propagation.

B. Average BER of BLP

Fig. 4 shows the effects of p7T" on BER performance of
BLP with BPSK andM = 3. It can be seen that increasing
can improve the tracking performance whereas it degrades the
BER performance under low SNR. This is because lagger

The conditions for the first term to vanish are given by,ayes the approximation of (15) more accurate but increases
(19) and (20). Thus, the above minimization is equivalent {e number of constraints of (20), which enhances the noise
minimizing (33) under the constraints of (19) and (20). Byower of (32) and causes the degradation in low SNR region.
applying the method of Lagrange multipliers, this problem begte that the BER performance of BLP with = 2 at high

comes equivalent to obtainingthat minimizes the following gNR degrades due to the intrablock interference. Considering

cost functionf(c):

cHe + Ao (1 — ctbg) + A5(1 — blle),
for ¢ =0
cHe + Ao(1 — cfbg) + A5(1 — blic)

q1 q1
_ 21 Agctb, — 21 Asblle, for g1 >1
q= q=

f(c)= (34)

this trade-off, the proper values qf from fpT = 1073 to
5x 1072 are listed inTable II.

C. Comparison with other methods

Figs. 5(a) and (b) show average BER performance versus
averageFE, /Ny of BLP and the conventional methods with
fpT = 0.02 for BPSK and QPSK, respectively. The result

where {\,} is a set of Lagrange multipliers. By taking theyjth the solution of Yule-Walker equation can be considered
derivatives of f(c) with respect toc and {\,}, and equating a5 4 lower bound of the other methods. It can be seen that

its results to zero, the optimalis derived as

q1

c=c" = Z(B(]_ll)qul,lbq?
q=0

(39)

BLP is superior to the RLS method using the training in BER
performance when averagde,/N, is greater than 20 dB and

that the BER of BLP is very close to the lower bound. It is
also found that the BER with QPSK is worse than that with



10° :

Average BER

1072 :
107 1072 107!
foT
(a) AverageFE;, /Ny = 10dB
10° :
M=3
o0t b BPSK
[an :
) i .
(0]
(o))
g :
o 1073 b
<<
107+
1073
10° 1072 107!
T

(b) AverageFE), /Ny = 40dB

10°
107!
& 107
m
Q
(o]
o
S 10°
<
107
105 ; ; ; ; ; ; ;
0 5 10 15 20 25 30 35 40
Ep/No (dB)
(a) BPSK
10° . . . . . . .
107!
& 107
o
(0]
(o]
o
S 10’}
<
10 i i i i i i i
0 5 10 15 20 25 30 35 40
Ey/No (dB)
(b) QPSK

Fig. 4 Average BER of blind linear prediction (BLP) versu$ig. 5 Average BER versus averagg/N, of proposed and
fpT with the polynomial approximation degre¢ as a conventional methods with the prediction orddr = 2

parameter

BPSK. The reason is that the fading fluctuation often causes

two bits error per symbol with QPSK while it causes at most

one bit error per symbol with BPSK.

VI. CONCLUSION

(5]

ML detection with BLP for DSTBC on a fast fading channel[6]
has been proposed. BLP can determine the linear prediction
coefficients without neither decision-feedback nor informationy)

on the channel parameters in contrast to the conventional ones.
Computer simulation has shown that the BER performance
BLP with a proper degree of the polynomial approximation

is superior to that of the conventional RLS method using the

training method.
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