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Abstract— This paper proposes a maximum likelihood detec-
tion (MLD) method for the differential space-time block code
(DSTBC) in cooperation with blind linear prediction (BLP) of
fast frequency-flat fading channels. The method, which linearly
predicts the fading complex envelope, determines the linear
prediction coefficients by the method of Lagrange multipliers,
and does not use decision-feedback nor require information on
channel parameters such as the maximum Doppler frequency in
contrast to conventional ones. Computer simulations under a fast
fading condition demonstrate that the proposed method with a
proper degree of polynomial approximation can be superior in
BER performance to a conventional method that estimates the
coefficients by the RLS algorithm using a training sequence.

I. I NTRODUCTION

Alamouti’s space-time block code (STBC) has attracted
much attention because it can achieve full spatial diversity
without bandwidth expansion by using two transmit antennas
[1]. However, STBC requires accurate channel estimation
for coherent detection, although it can hardly perform such
estimation under fast fading environments. In order to achieve
the spatial diversity without channel state information (CSI),
differential STBC (DSTBC) was proposed [2]. In a static chan-
nel, however, BER performance of DSTBC is approximately
3 dB worse than that of STBC with coherent detection. For
improving the performance, some methods including multiple-
symbol detection (MSD) were applied to the detection of
DSTBC [3], [4]. Nevertheless, these schemes assume a time-
invariant channel during each transmission block.

To cope with the fast fading, the methods of linear predic-
tion were applied to DSTBC in [5]-[8]. The linear prediction
scheme estimates a current complex envelope by using the
past ones, and performs the maximum-likelihood sequences
estimation (MLSE) to find the sequence that maximizes the
log likelihood function. However, this conventional scheme
needs information on both the maximum Doppler frequency
and signal-to-noise ratio (SNR) in order to obtain the optimum
prediction coefficients. Another conventional scheme estimates
the coefficients by the RLS algorithm using decision-feedback,
which may cause error propagation [9], [10].

For solving these problems, this paper proposes blind linear
prediction (BLP) for DSTBC that employs the method of
Lagrange multipliers to determine the prediction coefficients
by using neither the data of decision-feedback nor information
on the channel parameters.
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Fig. 1 The system model

II. SYSTEM MODEL

A. Received signal

Fig. 1 shows the system model of DSTBC with two
transmit antennas andNR receive antennas. LetT denote the
symbol duration. The channel is assumed to be time-varying
frequency-flat Rayleigh-fading, wherehlp(i) is a channel
impulse response between thep-th transmit antenna (p = 1,
2) and thel-th receive antenna (l = 1, ..., NR) at discrete
time iT . The receiver for DSTBC [6] assumes thathlp(i) is
constant during each STBC block (two symbols) as

hlp(2k) = hlp(2k − 1), (1)

wherek is a block index. Note that this assumption is used
below except the computer simulation section. It is also note-
worthy that it is not satisfied under very fast fading conditions,
which causes the receiver considerable intrablock interference
[8].

rl(i) represents the signal received by thel-th receive
antenna at discrete timeiT , and a 2-by-1 received signal vector
r l(k) is defined as

rH
l (k) =

(
r∗l (2k−1) r∗l (2k)

)
, (2)

where the superscriptH and ∗ denote Hermitian transposition
and complex conjugation, respectively. On the assumption of
(1), r l(k) can be written as

r l(k) = D(k)hl(k) + nl(k), (3)

where the 2-by-1 impulse response vectorhl(k) and the 2-by-1
noise vectornl(k) are given by

hH
l (k) =

(
h∗l1(2k) h∗l2(2k)

)
, (4)

nH
l (k) =

(
n∗l (2k−1) n∗l (2k)

)
. (5)



Here, nl(i) is an additive white Gaussian noise at discrete
time iT with varianceσ2

n and zero mean, and is statistically
independent with respect to receive antenna indexl.

The 2-by-2 STBC symbol matrixD(k) is defined as

DH(k) =
(
s∗1(k) s∗2(k)

)
, (6)

where the 2-by-1 transmitted symbol vectorss1(k) ands2(k)
are given by

sH
1 (k) =

(
s∗(2k−1) s∗(2k)

)
, (7)

sH
2 (k) =

(−s(2k) s(2k−1)
)
. (8)

Here,s(i) represents a complex symbol of2Nd -PSK modula-
tion. s1(k) ands2(k), which are orthogonal to each other and
have unit lengths, correspond to transmitted signals at discrete
time (2k− 1)T and2kT , respectively. Note that the power of
each transmitted symbol is fixed to1/2 in order to keep the
transmit power per symbol constant (= 1).

B. DSTBC encoder and decoder

The DSTBC encoder inFig. 1 performs differential encod-
ing with the STBC format, which can be expressed as [2]

sT
1(k) = A(k)sT

1(k − 1) + B(k)sT
2(k − 1)

=
(
A(k) B(k)

)
D(k − 1), (9)

where the superscriptT denotes transposition. The complex
vector

(
A(k) B(k)

)
depends on2Nd information bits and

satisfies the constraint that the elements ofs1(k) should be
a 2Nd -PSK constellation symbol. Note thats1(0) can be
arbitrarily set, e.g. to

(
1/
√

2 1/
√

2
)
.

The DSTBC decoder inFig. 1 detects
(
A(k) B(k)

)
from

D̂(k− 1) and D̂(k) which the symbol detector provides as
estimated values ofD(k−1) andD(k). The detection can be
expressed as

(Â(k) B̂(k)) = ŝT
1(k)D̂

H
(k − 1), (10)

where Â(k), B̂(k), and ŝ1(k) are estimated values ofA(k),
B(k), ands1(k), respectively. The derivation of (10) uses the
property thatD(k) is an unitary matrix. From(Â(k) B̂(k)),
the 2Nd transmitted information bits can be determined.

III. C HANNEL MODEL

A. Multipath propagation

Under the multipath propagation,hlp(i) can be written as

hlp(i) =
∑

d

alp,de
j(2πfDT cos θlp,d)i, (11)

where alp,d and θlp,d represent a complex envelope and
incident angle of thed-th propagation path, respectively.fD is
the maximum Doppler frequency andfDT is generally much
less than 1.

B. Autoregressive (AR) process

On the assumption thathlp(i) of (11) includesM dominant
paths,hlp(i) hasM dominant tones and then can be modeled
as an AR process of orderM . Considering this model and the
assumption of (1),hlp(2k) is expressed as

hlp(2k) =
M∑

m=1

clp,mhlp[2(k −m)] + vlp(2k), (12)

whereclp,m is equal to an AR parameter multiplied by−1, and
vlp(2k) that represents residual propagation paths is assumed
to be a negligible white-noise process.

Next, let us consider Taylor series expansion ofhlp[2(k −
m)] that is given by

hlp[2(k −m)] =
∞∑

q=0

(−2m)q

q!
h

(q)
lp (2k), (13)

whereh
(q)
lp (2k) is theq-th derivative ofhlp(2k) and is derived

from (11) as

h
(q)
lp (2k) = (fDT )q

[∑

d

alp,d(j2π cos θlp,d)qej4πfDTk cosθlp,d

]
.

(14)

Evidently, h
(q)
lp (2k) is proportional to(fDT )q and exponen-

tially decays asq increases. Let us assume thath
(q)
lp (2k) with

q > q1 can be neglected. The integerq1 is referred to as a
degree of polynomial approximation.

Substituting (13) into (12) and neglectingh(q)
lp (2k) with q >

q1 and the white noisevlp(2k) yield

hlp(2k) ≈
q1∑

q=0

[ M∑
m=1

clp,m(−2m)q(q!)−1
]
h

(q)
lp (2k). (15)

The conditions for anyh(q)
lp (2k), 0 ≤ q ≤ q1, to satisfy (15)

are given by

M∑
m=1

clp,m = 1, (16)

M∑
m=1

clp,m(−2m)q = 0, q1 ≥ 1, 1 ≤ q ≤ q1. (17)

Since (16) and (17) are independent of indicesl andp, we
assume thatclp,m = cm for all l and p. Accordingly, (12),
(16), and (17) can be rewritten in simple vector forms as

hl(k) =
M∑

m=1

cmhl(k −m) + vl(k), (18)

cHb0 = 1, (19)

cHbq = 0, q1 ≥ 1, 1 ≤ q ≤ q1, (20)

where theM -by-1 prediction coefficient vectorc and theM -
by-1 vectorbq are defined as

cH =
(
c1 c2 · · · cM

)
, (21)

bH
q =

(
(−2)q (−4)q · · · (−2M)q

)
, 0 ≤ q ≤ q1. (22)



vl(k) is the 2-by-1 process noise vector havingvlp(2k) as its
elements.

IV. SYMBOL DETECTION

A. MLSE

The symbol detector inFig. 1 performs MLSE on the basis
of the linear prediction. The log likelihood function is derived
from (3) as follows:

First, multiplying the both hand sides of (3) byD−1(k)
results in

D−1(k)r l(k) = hl(k) + D−1(k)nl(k). (23)

SinceD(k) is an unitary matrix, this can be rewritten as

DH(k)r l(k) = hl(k) + ñl(k), (24)

where the 2-by-1 vector̃nl(k) is defined as

ñl(k) = DH(k)nl(k). (25)

The autocorrelation matrix of̃nl(k) is given by
〈
ñl(k)ñH

l (k)
〉

=
〈
nl(k)nH

l (k)
〉

= σ2
nI , (26)

where
〈·〉 denotes ensemble average andI is the 2-by-2 identity

matrix. It is also evident from (25) that̃nl(k) is statistically
independent with respect to both time indexk and receive
antenna indexl. Therefore, the log likelihood function can be
expressed as [6]

L =
NR∑

l=1

l(r l|s) = −
NR∑

l=1

∑

k

∥∥DH
n(k)r l(k)− ĥl(k)

∥∥2
, (27)

whereDn(k) is a candidate ofD(k) and ĥl(k) is an estimate
of the impulse response vectorhl(k).

B. Blind linear prediction (BLP)

1) Applying linear prediction to MLSE:Let us discuss the
estimation of̂hl(k) by linear prediction. Considering (18) and
(24), ĥl(k) can be approximated as

ĥl(k) =
M∑

m=1

cmDH
n(k −m)r l(k −m). (28)

Substituting (28) into (27) yields the branch metric given by

Bn(k) = −
NR∑

l=1

∥∥∥∥DH
n(k)r l(k)−

M∑
m=1

cmDH
n(k−m)r l(k−m)

∥∥∥∥
2

.

(29)

A block diagram of the symbol detector using this branch
metric is shown inFig. 2 (a). For alll, r l(k) is multiplied by
DH

n(k) which the Viterbi algorithm (VA) processor provides.
The resultant is fed into the linear predictor that generates
ĥl(k) following (28) and of which structure is depicted in
Fig. 2 (b). SquaringDH

n(k)r l(k) − ĥl(k) and combining the
resultants with respect tol yield the branch metric, which is
passed into the VA processor.

The VA processor searches the sequence ofDn(k) that
maximizes the log likelihood function of (27) by VA, and
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Fig. 2 Symbol detector

outputs the resultant as the detected signalD̂(k). VA considers
sequences ofDn(k) as those of states, and can effectively
find the maximum likelihood sequence on a trellis diagram.
In this case, the state at discrete time2kT is expressed as
{s1n(k − 1), s1n(k − 2), ..., s1n(k −M)} where s1n(k) is a
candidate ofs1(k). Therefore, the numbers of states and state
transitions are equal to22MNd and22Nd , respectively.Fig. 3
shows the trellis diagram for BPSK (Nd = 1) with M = 2.

2) Prediction coefficients:Conventional methods determine
the prediction coefficientsc by solving Yule-Walker equation
[7] or using the RLS algorithm [9] which require information
on fDT and SNR, or detected symbols. The proposed blind
method can determine the coefficients without detected and
training symbols and any channel information as follows:

A 2-by-1 prediction error vectorel(k) is defined as

el(k) = DH(k)r l(k)−
M∑

m=1

cmDH(k −m)r l(k −m)

=
[
hl(k)−

M∑
m=1

cmhl(k−m)
]
+

[
ñl(k)−

M∑
m=1

cmñl(k−m)
]
.

(30)

When Dn(k) = D(k) for all k, the branch metric of (29) is
given by

Bn(k) = −
NR∑

l=1

∥∥el(k)
∥∥2

. (31)

Since el(k) can be considered a virtual noise, minimizing〈∥∥el(k)
∥∥2〉

results in the optimal BER performance. To de-
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Fig. 3 Trellis diagram for BPSK with the prediction order of
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crease
〈∥∥el(k)

∥∥2〉
as much as possible, the proposed method

forces the first term of (30) to be zero, and then minimizes
the mean squared norm of the second term. This is because
the first term can be zero due to the property thathl(k) is a
deterministic process, whereas the second term cannot vanish
due to the property that̃nl(k) is a stochastic process.

After forcing the first term to be zero,
〈∥∥el(k)

∥∥2〉
is

expressed as
〈∥∥el(k)

∥∥2〉 = 2σ2
n

(
1 +

M∑
m=1

∣∣cm

∣∣2
)
. (32)

Minimizing (32) is equivalent to

M∑
m=1

∣∣cm

∣∣2 = cHc→ min. (33)

The conditions for the first term to vanish are given by
(19) and (20). Thus, the above minimization is equivalent to
minimizing (33) under the constraints of (19) and (20). By
applying the method of Lagrange multipliers, this problem be-
comes equivalent to obtainingc that minimizes the following
cost functionf(c):

f(c) =





cHc + λ0(1− cHb0) + λ∗0(1− bH
0 c),

for q1 = 0
cHc + λ0(1− cHb0) + λ∗0(1− bH

0 c)

−
q1∑

q=1
λqcHbq −

q1∑
q=1

λ∗qb
H
q c, for q1 ≥ 1

(34)

where {λq} is a set of Lagrange multipliers. By taking the
derivatives off(c) with respect toc and {λq}, and equating
its results to zero, the optimalc is derived as

c = c∗ =
q1∑

q=0

(B−1
q1

)q+1,1bq, (35)

TABLE I Simulation condition
Packet format 128 symbols
Constellation mapping BPSK, QPSK
Receive antennas 1 branch
Channel Fast flat Rayleigh fading
fDT 1×10−3− 1×10−1

TABLE II Proper value of the degree of the polynomial
approximation (q1) corresponding to prediction order (M )

M q1

2 1
3 1
4 1, 2

where(Bq1)iu = bH
i−1bu−1, i, u = 1, ..., (q1 + 1).

Note that the optimalc does not depend on any channel
characteristics and varies according toq1. It is also noteworthy
that the solution withM = 2 andq1 = 1 is equivalent to linear
prediction coefficients for SISO in [11].

V. COMPUTERSIMULATIONS

A. Simulation condition

A series of computer simulations was conducted to evaluate
the performance of BLP. The simulation condition is summa-
rized in Table I. For comparison, the conventional methods,
the solution of Yule-Walker equation using information on
SNR andfDT , and the RLS algorithm usingNTS training
symbols instead of detected ones, were also evaluated. Note
that the RLS algorithm using only detected symbols [9],
[10] is obviously inferior to that using the training in BER
performance, owing to the error propagation.

B. Average BER of BLP

Fig. 4 shows the effects offDT on BER performance of
BLP with BPSK andM = 3. It can be seen that increasingq1

can improve the tracking performance whereas it degrades the
BER performance under low SNR. This is because largerq1

makes the approximation of (15) more accurate but increases
the number of constraints of (20), which enhances the noise
power of (32) and causes the degradation in low SNR region.
Note that the BER performance of BLP withq1 = 2 at high
SNR degrades due to the intrablock interference. Considering
this trade-off, the proper values ofq1 from fDT = 10−3 to
5×10−2 are listed inTable II .

C. Comparison with other methods

Figs. 5 (a) and (b) show average BER performance versus
averageEb/N0 of BLP and the conventional methods with
fDT = 0.02 for BPSK and QPSK, respectively. The result
with the solution of Yule-Walker equation can be considered
as a lower bound of the other methods. It can be seen that
BLP is superior to the RLS method using the training in BER
performance when averageEb/N0 is greater than 20 dB and
that the BER of BLP is very close to the lower bound. It is
also found that the BER with QPSK is worse than that with
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Fig. 4 Average BER of blind linear prediction (BLP) versus
fDT with the polynomial approximation degreeq1 as a
parameter

BPSK. The reason is that the fading fluctuation often causes
two bits error per symbol with QPSK while it causes at most
one bit error per symbol with BPSK.

VI. CONCLUSION

ML detection with BLP for DSTBC on a fast fading channel
has been proposed. BLP can determine the linear prediction
coefficients without neither decision-feedback nor information
on the channel parameters in contrast to the conventional ones.
Computer simulation has shown that the BER performance of
BLP with a proper degree of the polynomial approximation
is superior to that of the conventional RLS method using the
training method.
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