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BackgroundBackground

STBC (SpaceSTBC (Space--Time Block Codes)Time Block Codes)

• Merit: Channel estimation is not required.
• Demerit: Degradation of BER under static condition (3 dB Eb/N0)

DSTBC (Differential SpaceDSTBC (Differential Space--Time Block Codes)Time Block Codes)
Differential DetectionDifferential Detection

• Suppressing the above 
degradation
• Tracking fast fading

Conventional Conventional : need fading information or training

• Perform linear prediction without fading info. nor training

Proposal: Proposal: Blind Linear Prediction (BLP) DetectionBlind Linear Prediction (BLP) Detection

Linear Prediction DetectionLinear Prediction Detection
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Linear Prediction:Linear Prediction:
Conventional vs. ProposalConventional vs. Proposal

ConventionalConventional ProposalProposal

• Yule-Walker Equation
- Require information on fDT
and SNR

• RLS algorithm
- Adaptively update the 
coefficients  
- Might need a lot of training 
symbols for accurate 
parameter estimation

•• Blind Linear Prediction Blind Linear Prediction 
(BLP)(BLP)

- Determine constant prediction 
coefficients by the method of 
Lagrange multipliers.

- Does NOT need knowledge of
1.  fDT
2. SNR
3. Training sequences
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Signal ModelSignal Model
time-varying flat Rayleigh fading
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ML Detection with Linear PredictionML Detection with Linear Prediction

nn Maximum Likelihood Detection:Maximum Likelihood Detection:
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Log likelihood function:
)(knD : the n-th candidate of the 

unitary matrix D(k)
)(ˆ klh : the estimate of hl(k)
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M : order of the prediction 
{cm}: prediction coefficients
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Blind criteria to determine {Blind criteria to determine {ccmm}}
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Modified constraints of {Modified constraints of {ccmm}}
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Modified Constraints:Modified Constraints:

From the channel constraints, 

q1: degree of the 
polynomial 
approximation
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The Solutions of {The Solutions of {ccmm}}

ccH

1
H

0
H

1,0

1

qqq ≤≤=

=

bc

bc

can be solved by using the method of Lagrange multipliers.
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Solutions Analysis Solutions Analysis 

q1= 0  à Constant ave.
q1= 1  à Linear ave.
q1= 2  à Parabolic ave.
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Larger q1

Prediction of hlp
becomes more 
accurate

The solutions:

However..
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variance (due to 
increasing constraints)
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Simulation ConditionsSimulation Conditions

1x10-3 – 1x10-1Normalized Doppler frequency (fDT)

Fast flat Rayleigh fadingChannel

1Number of receive antenna

2Number of transmit antenna

BPSK, QPSKConstellation mapping

128Number of symbol per packet
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Dependence on Degree of Polynomial Dependence on Degree of Polynomial qq11

: parabolic

: linear

: const.

Eb/N0 = 10 dB Eb/N0 = 40 dB

Worse than (q1 = 1)  due 
to intrablock interference

more accurate 
channel predictionmore noise expansion
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Average BER Performance vs.Average BER Performance vs. EEbb/N/N00

BLP is Better than RLS 
(32 NTS) in both BER 
performance and 
transmission efficiency

NTS = Number of 
training symbols
(per 128 data symbols)
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n Blind Linear Prediction (BLP) on Differential STBC 
(DSTBC) has been proposed by the method of 
Lagrange multipliers.
n NO channel information nor training sequences

n The BER performance of BLP is better than that of the 
RLS algorithm with 32-symbol training.

n The performance of BLP depends on q1 which is obtained 
by trade-off between
n Accuracy of channel prediction.
n Noise expansion.

ConclusionConclusion



Thank you!!Thank you!!
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Solving {Solving {ccmm} by Yule} by Yule--Walker EquationWalker Equation
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Solving {Solving {ccmm} by RLS Algorithm} by RLS Algorithm

n Recursively, the prediction coefficients {cm} are updated 
using NTS training symbols.
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n Linear Prediction Error: 

n Gain matrix: 

n Inverse of covariance matrix: 

n Coefficients Update: 
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