TOKYO TECH MOBILE COMMUNICATIONS RESEARCH GROUP OPEN HOUSE 2009 "Surmounting Economic Crisis through Wireless Technology"

Wide area ubiquitous wireless system for M2M communications

16 April 2009

NTT Network Innovation Laboratories

Osamu Kagami

Email:kagami.osamu@lab.ntt.co.jp

In 1984, Dr. Sakamura proposed "Anywhere computer(どこでもコンピュータ)".

「あらゆるモノの中にコンピュータが入り、それらがネットワークで結ばれる」TRONプロジェクトの根源的な考え方

In 1988, Dr. Mark Weizer proposed "Ubiquitous computing".

生活や社会の至る所にコンピュータが存在し、コンピュータ同士が自律的に連携して動作することにより、人間の生活 を強力にバックアップする情報環境

In 1998, IBM presented the concept of "Pervasive Computing".

In 1998, the University of California started the "Smart Dust" project.

In 1999, MIT started the "Oxygen" project.

In 2000, HP started the "Cool Town" project.	Omron presented the plan of
	"M2M" with NTT docomo and
In 2000, NTT presented the concept of "HIKARI vision".	NRI in 2000.
"火いっしみ」 ビッ"」"っ ビナクマル」 ビッ"に とい 中田 さね て 桂起曲 かた 漂ね	E"Informative Ambience"た担阻

光ソフトサービス"+"ユビキタスサービス"により実現される情報豊かな環境"Informative Ambience"を提唱

Since then, many research organizations aim at the realization of "Ubiquitous".

Development of ubiquitous services

NTT Network Innovation Laboratories©2009

3

Target of Ubiquitous Network

To provide ICT services expected in ubiquitous society with safety & security and ecology.

Wireless systems for M2M communication

In order to gather information (so-called "life logs") from so many machines scattered over wide area, it is necessary to integrate into one system.

Wide area ubiquitous network (WAUN)

- A cost effective network infrastructure for pervasively distributed movable wireless terminals (sensors and/or actuators)
- Wide-area network with several km radius cell and low capability terminals

WAUN will be a new type of network to realize service domain that cannot be fully supported by conventional mobile phone network.

Platform for wide area ubiquitous network

In addition to providing conventional network service, WAUN has several functions such that store data in the network and remake them different type of data according to user requests.

Example for Platform Services : Application of "life log"

Environmental sensing for a good and healthy life

What we do

- Environmental evaluation
- Providing information
- •Health advisory
- Applications for disasters

How we do

- Sensing by public sensors (Toxic gas, UV, Pollen, Traffic, Noise, Odor etc.)
- Personal customizations based on measured and predicted data (Caution, Advice)
- Portable information terminals which are enable to exchange information
- Make sensor nodes be like a public post

The Image of the sensor world

Technologies for wide area ubiquitous wireless system

Technology	Contents
Block demodulation	High receiver sensitivity and frame efficiency for very short packets (Uplink)
Synchronization	Burst synchronization for low power consumption of the WTs (Downlink)
Transmission diversity	Transmission diversity installed on the BS to simplify the WTs (Downlink)
Cell configuration	The BSs are allocated on the edge of a cell to get high diversity gain
AoA-based location estimation	The location estimation method which is enable to apply to narrow band signals (Uplink)
Multiple access control	Combination of random access and demand assign to get higher throughput
QoS control	High capacity and meeting the QoS requirement by controlling access parameters depending on input traffic with QoS classes
Terminal Paging	Low power consumption of wireless terminals without increasing the paging delay
Sleep control	Low power consumption and long battery life of wireless terminals with various delay conditions
Radio resource management	Control huge number of terminals (Millions/ch)
Antenna of the WT	Achieve small and high gain antenna such as a loop dipole antenna using meander lines
DROF (Digital Radio on Fibre)	Realize site diversity reception by using functions such as high-precision time and frequency synchronization
Low power consumption for wireless terminal	Lower maintenance costs by lower power consumption at standby

Block demodulation

Deterioration of transmission efficiency cannot be ignored, especially when uplink traffic is dominated by short bursts.

Block demodulation technique makes possible preamble-less burst structure that improves transmission efficiency.

Performance evaluation

Proposed burst synchronization method achieves superior transmission performance as well as outstanding transmission efficiency, especially under fading environment

Transmitter diversity

Cell structure

In order to get higher site diversity gain, we introduced new cell structure such that allocated several base stations on the edge of a cell.

Location Estimation

We introduced the location estimation method which is enable to apply to narrow band signals. By using this method, wireless terminal has no special function such as GPS.

NTT Network Innovation Laboratories©2009

DSA with hybrid access methods

Key points

- Combination of random access and demand assign leads to high throughput performance.
- DSA (Dynamic Slot Assignment) realizes effective radio resource utilization.

MAC frame structre

- TDMA/TDD is employed
- MAC frame is constant length and consists of downlink and uplink periods.
- Downlink-uplink boundary is variable.
- Access method
 - Random access (RA)
 - Demand assign (DA)

- Logical channels
 - BCCH: Used to report the attributes of AP.
 - FCCH: Indicates the MAC frame structure.
 - RFCH: Used to send information associated with random access.
 - RBCH: Used to a radio link control message.
- UDCH: Used to transmit user data.
- LCCH: Used to transmit an ARQ feedback.
- RACH: Used to send a resource request to AP.

Ж ∟/U LCCH ог UDCH NTT Network Innovation Laboratories©2009

Principle and effectiveness of proposed scheme

- Uplink transmission is achieved by two steps: 1) Resource request (RREQ) transmission in RA, 2) User data transmission in DA.
 - ⇒RA slot size reduction
 - ⇒RA overhead reduction
 - \Rightarrow Suitable for variable data transmission \Rightarrow Effective accommodation for by an infrequent traffic by RA use
- All resources are assigned in a request basis. ⇒Prevention of useless assignment
 - •Both RA (Random access) and DA (Demand assign) are used for an uplink transmission.
 - •Exponential back-off algorithm is employed to avoid RA collision.

Performance evaluations

- Maximum throughput of our scheme is about 0.34.
- Throughput of our scheme is 20% higher than the best performance of all.
- Our scheme needs the lowest transmission power of all. ⇒Most effective power saving

Digitized Radio over Fiber (DROF) Technology

To realize "Site Diversity" functionality, the base station is divided into geographically separated units (Master and Remote), and these units are connected by using DROF technology over photonic network.

Precise Synchronization with DROF

Hardware implemented Network Time Protocol (NTP) based precise synchronization

Frequency Synchronization between Master and Remote Units
Synchronized Timestamp based Timing Control

Fixed Transmission Delay between Master and Remote Units

Low-Power Mobile Technology

19

MTCMOS/SOI circuit scheme 1) reduces the mobile's power dissipation by over a decade. 2) achieves a battery life of over five years for a low duty-cycle mobile operated with a coin-sized battery Example of MTCMOS This circuit scheme achieves high-frequency but low standby-current operation /SOI circuit scheme by combining two types MOSFETs. One operates at high speed with large leakage current and the other operates at low speed with small leakage current. Average power of a mobile terminal Conventional mobile 10mW **Conventional circuit** Leakage power of scheme MOSFET for cutting 1mW conventional scheme down leakage curent 0.1mW 0.01mW Leakage power is reduced by over a Our proposal Targeted area 0.001mW decade Power level to achieve

ten-year operation 10 100 10000 1000 with coin-sized battery Duty cycle(standby time/active time) NTT Network Innovation Laboratories©2009

Benefit of low-power mobile technology

The low-power mobile technology makes it possible to achieve a battery life of ten years ^(*1) for a wireless terminal that connects with a base station once a two hours. Case of a battery capacity of 2200mAh (*1)

Condition

ТΧ

Standby

Message delivery interval: once a 2hrs.

Standby ____TX

Idle listening interval: 32sec

Battery life v.s. message delivery interval

Field Experiments (2005-2006)

- (1) Received level within the measured area.
- (2) Packet error rate performance on the sample test course.

System Parameters for the field experiments

Frequency band	280 MHz
Output power of wireless	10 mW
terminal	
Modulation /	QPSK mapping / Coherent
Demodulation methods	detection
Modulation rate	9,600 symbol/s
Transmission rate	9,600 bps
Forward error correction	Convolutional coding / Viterbi
	decoding
	(K=7, R=1/2)
Receiver diversity at	Maximal ratio combining with 3
base station	branches
Antenna gain	Base station: 10 dBi
	Wireless terminal: -16 dBi

Results of field experiments (1)

Reception level of -123 dBm is achieved within 92% of the measured area.

Cumulative probability of reception level in measured area.

Results of field experiments (2)

PER was insignificant for transmission distances of up to 3.5 kilometers.

NTT activities in u-Japan project of MIC

NTT Network Innovation Laboratories©2009

Thank you for your attention!